°t«´ÝȪk(Method of Weighted Residuals, MWR)ªº°ò¥»Æ[©À¡A¬O§Q¥Î¤@²Õ¦h¶µ¦¡ªí¥Üªñ¦ü©ó°ÝÃDªº¥¿½T¸Ñ¡A±N¥¿½T¸Ñ»Pªñ¦ü¸Ñªº»~®t´ÝÈ¡A¼¥H¾A·íªº°t«¨ç¼Æ«á¡A¨Ï¨äÁ`©M©Î¿n¤Àȳ̤p¤Æ¡A¥H¹F¨ì³Ì±µªñ¥¿½T¸Ñªº¥Ø¼Ð¡C¤uµ{¬É±Ä¥ÎMWR°t«´ÝȪk¸Ñ¨M¤uµ{¤ÀªR°ÝÃD¡A¬ù¦Û1960¦~¥N¶}©l¡A¥Ø«e¤w¦³³\¦h±M®Ñ [ 1¡A2¡A3 ] ¸Ô²Ó°Q½×³oºØ¤èªk¡A¨äÀ³¥Î¼s¨£©ó¬yÅé¤O¾Ç¡B¼ö¶Ç»¼¡B½è¶q¶Ç»¼¡B¤ÏÀ³¤uµ{µ¥¦U»â°ì¡A¬O¤@ºØ¬Û·í¦³®Ä²vªº¼Æ¾Ç¤u¨ã¡C°t«´ÝȪk¤¤¡A¤S¥H¼Æ¾Ç°t¸mªk³Ì©ö©ó¨Ï¥Î¡Aªñ¦~¨Ó¤w¦¨¬°¸Ñ·L¤À¤èµ{¦¡ªº¼ÆÈ¤èªk¤¤³Ì¼sªx³Q¨Ï¥Îªº¤èªk¤§¤@¡C
¬°¤F»¡©ú°t«´ÝȪkªº°ò¥»·Qªk»P³B²z¤èªk¡A§Ú̺¥ý¥H¤@ӳ̲³æªºÃä¬Éȱ`·L¤À¤èµ{¦¡¬°¨Ò¥[¥H»¡©ú¡C
(10-1.1)
°²³]¤Î
¦b0¡Õx¡Õ1ªº°Ï¶¡¤º³£¬O³sÄò¨ç¼Æ¡A«h¥H¤W¤èµ{¦¡ªº¸Ñ¤]¥²µM¬O¤@Ó³sÄò¨ç¼Æ¡C®Ú¾Ú¥»®Ñ²Ä¤T³¹ªº»¡©ú¡A¥ô¦ó³sÄò¨ç¼Æ³£¥i¥H§Q¥Î¤@Ó¦h¶µ¦¡¨Ó¥Nªí¡Q¦]¦¹¡A¤èµ{¦¡(10-1.1)ªº¸Ñ¡A¥i¥H§Q¥Î¤@µL¯Å¼Æªº©Mªí¥Ü¤§¡C
¨ä¤¤ui(x)ºÙ¬°°ò¦¨ç¼Æ(Basis Function)¡C¥Ñ©óxªº½d³ò¬°0¡Õx¡Õ1¡A·íiȼW¤j®É¡Axi§Y§Ö³tÅܤp¡Q¦]¦¹¡A¬°¤F²¤Æ°_¨£¡A¦Ò¼{·íi > N«áxi§Y¥i©¿²¤¡A ¥i¥H°²³]¬°§Q¥Î¤@Ó(N¡Ï1)¦¸¦h¶µ¦¡ªñ¦ü¤§¡C
(10-1.2)
¥Ñ©ó¬°¤èµ{¦¡(10-1.1)ªºªñ¦ü¸Ñ¡A¦]¦¹¡A
¤]nº¡¨¬·L¤À¤èµ{¦¡ªº¨âÓÃä¬É±ø¥ó¡ABC1¤ÎBC2¡F±N
¥N¤JÃä¬É±ø¥óBC1¤¤¡A±o¨ì¡G
BC1 (10-1.3)
±N¥N¤JÃä¬É±ø¥óBC2¤¤¡A±o¨ì¡G
BC2
©Î±N¦¹¤èµ{¦¡¾ã²z«á±o¨ì
(10-1.4)
±N¤èµ{¦¡(10-1.3)¤Î(10-1.4)¥N¦^¤èµ{¦¡(10-1.2)¡A«h£cªºªñ¦ü¸Ñªí¥Ü¦¡¥i¥H§ï¼g¦¨¬°
(10-1.5)
¦¹¤èµ{¦¡¤¤§t¦³C2¡AC3¡A¡K¡K¡ACN¡Ï1Á`¦@NÓ¥¼©w«Y¼Æ¡A¦]¦¹¡A»Ýn¦A§Q¥ÎNÓº¡¨¬·L¤À¤èµ{¦¡(10-1.1)ªº±ø¥ó¨Ó¨M©w³o¨Ç«Y¼Æ¡C
¬°¤F²¤Æ»¡©ú°_¨£¡Aº¥ý¦Ò¼{N¡×1ªº±¡ªp¡A¥ç§Y¡A«h¤èµ{¦¡(10-1.5)¥i²¤Æ¦¨
(10-1.6)
¥H¤W¨BÆJ¬°«Ø¥ß·L¤À¤èµ{¦¡ªñ¦ü¸Ñªí¥Ü¦¡ªº¤èªk¡C¨ä¦¸n¦Ò¼{¦p¦ó¨M©w¥¼©w«Y¼ÆC2¡AC3¡A¡K¡K¡ACN¡Ï1¡C¬°¤F²¤Æ»¡©ú°_¨£¡A±N·L¤À¤èµ{¦¡¼g¦¨L{x¡Ay}¡×0ªº§Î¦¡¡QYªñ¦ü¦h¶µ¦¡(10-1.2)§¹¥þº¡¨¬ì·L¤À¤èµ{¦¡¡A«h¥N¤J·L¤À¤èµ{¦¡±N±o¨ìL{x¡A}¡×0¡C¦ý¥Ñ©ó¦p«e±©Ò»¡©ú
¬°ªñ¦ü¸Ñ¡A±N
¥N¤J·L¤À¤èµ{¦¡L{x¡Ay} ¤¤¡Aµ²ªG¤£¤@©w¯à±o¨ì¹s¡C¦]¦¹¡A©w¸q
¥N¤J·L¤À¤èµ{¦¡©Ò±o¨ìªº´ÝȬ°R¡×L{x¡A
}¡C
±N¤èµ{¦¡(10-1.6)¥N¤Jì¤èµ{¦¡¡A±o¨ì´ÝȬ°
(10-1.7)
Y¬°¥¿½T¸Ñ¡A«h´ÝÈR¡×0¡C¦ý¥Ñ¤èµ{¦¡(10-1.7)¥i¥Hª¾¹D¡A¥Ñ©óx¦ì©ó0»P1¶¡(0¡Õx¡Õ1)¡A¦]¦¹¡A§ÚÌY¿ï©w¬Y¤@¯S©wC2È¡A¥²¯à¨Ï´ÝÈR¦b0¡Õx¡Õ1¶¡ªº¬Y¤@ÂI®É¬°¹s¡A¦Ó¦b¨ä¥Lx¦ì¸mªº´ÝÈR«h¥i¯à¤j©ó©Î¤p©ó¹s¡C¥i¬O»Ýª`·N¥Ñ©ó
¥u¬O¤@Óªñ¦ü¸Ñ¡A¦pªG´ÝÈR¦b¨C¤@x¦ì¸m³£µ¥©ó¹s¡A·íµM¬O³Ì¦nªº¸Ñµª¡A§_«h¤]¥i¥H°h¦Ó¨D¨ä¦¸¡An¨D´ÝÈR¦b©Ò¦Ò¼{°Ï¶¡0¡Õx¡Õ1¤ºªº¬Y¤@ºØ¥§¡È¬°¹s¡A¥ç§Y¡AÅý´ÝÈRªº°t«¿n¤À¬°¹s¡A¥ç¤£¥¢¬°¤@¨}¦nªºªñ¦ü¸Ñ¡C³oºØÆ[©À¥H¼Æ¾Ç¦¡ªí¥Ü¡A§Y¬°
(10-1.8)
¥ç§Y¡A¥unµ¹©w°t«¨ç¼Æ¡A§Q¥Î¤èµ{¦¡(10-1.8)°õ¦æ¿n¤À«á¡A§Y¥i¨D¸Ñ¥¼©w«Y¼ÆCi¡CµM«á¡A¥N¦^
ªºªí¥Ü¦¡(10-1.2)¡A§Y¥i¨D±o·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ
¡C¥H¤W©Ò»¡©úªº´N¬O°t«´ÝȪkªº°ò¥»·Qªk»P¨BÆJ¡A¥[¥H¾ã²z¦p¤U¡G
(1) §Q¥Î¤@Ó¦h¶µ¦¡§@¬°·L¤À¤èµ{¦¡L{x¡Ay}¡×0ªºªñ¦ü¸Ñ¡F
(2) ¨Ï¦h¶µ¦¡º¡¨¬·L¤À¤èµ{¦¡ªºÃä¬É±ø¥ó¡A¨Ã²¤Æªí¥Ü¦¡¡Q
(3) ¥N¤J·L¤À¤èµ{¦¡L{x¡Ay}¡×0¡A¨D¥X´ÝȪºªí¥Ü¦¡R¡×L{x¡A}¡Q
(4) ©w¸q°t«¨ç¼Æ¡F
(5) ¨Ï°t«´ÝȪº¿n¤À¦¡¬°¹s¡A§Y¡Q¥i¥H«Ø¥ßNÓ¥¼©w«Y¼ÆCiªºÁp¥ß¤èµ{¦¡¡F
(6) ¸ÑÁp¥ß¤èµ{¦¡¡A§ä¥Xªñ¦ü¦h¶µ¦¡ªº¥¼©w«Y¼ÆCi¡Q
(7) ¥N¦^ìªñ¦ü¦h¶µ¦¡¡A«Ø¥ß·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡Q
(8) §Q¥Î¾A·í¤º´¡ªk¡Apºâ·L¤À¤èµ{¦¡¦b¯S©w¦ì¸mªº¸Ñ¡C
°t«´ÝȪk(Methods of Weighted Residuals)ªº°ò¥»·Qªk¦p«e±ªº¤¶²Ð¡A¦ý°t«¨ç¼Æ¦³¦hºØ¤£¦Pªº¿ï¾Ü¡C¨Ì©Ò¿ï¾Ü°t«¨ç¼Æ
ªº¤£¦P¡A¹ïÀ³ªº°t«´ÝȪk§Y¦³¤£¦Pªº¦WºÙ¤Î¤£¦Pªº¯S©Ê¡A¥H¤U¤À§O²n¤¶²Ð¤§¡C
[A] °t¸mªk(Collocation Method)
°t¸mªkªº°t«¨ç¼Æ©w¸q¬°
(10-1.9)
¨ä¤¤ºÙ¬°°t¸mÂI(Collocation points)¡C
ºÙ¬°Dirac Delta¨ç¼Æ¡A°²³]´ÝÈR¡×L{x¡A
}¨ç¼Æ¦b©Ò¦Ò¼{ªº±±¨îÅé¿nV¤§¥~¤£¦s¦b¡A«h°t«´ÝÈ¿n¤À¦¡¥i¥H¼g¦¨
³oºØ¤èªkªí¥Ü¦b°t¸mÂI¦ì¸m¤Wªº´ÝȤ@©w¬°¹s¡C·íNȼW¤j®É¡A´ÝÈR(x)·|¦b¶V¦hªºÂI¤W¬°¹s¡A¨Ï±oªñ¦ü¸ÑÁͪñ©ó¹ê»Ú¸Ñ¡C
ÄõY´µ(Lanczos, C. 1938)¿ï¾Ü®ã¤ñ³·¤Ò¦h¶µ¦¡(Chebyshev Polynomial)§@¬°°ò¦¨ç¼Æui(x)¡A®ã¤ñ³·¤Ò¦h¶µ¦¡¬O¤@ºØ¥¿¥æ¦h¶µ¦¡¡CÄõY´µ¨Ã§Q¥Î®ã¤ñ¦è¤Ò¦h¶µ¦¡ªº®Ú§@¬°°t¸mÂI¡A³oºØ¤èªk§YºÙ¬°¥¿¥æ°t¸mªk(Orthogonal Collocation)¡C
[B] ¤Ú¿Õ¤Ò¡X¸¯°Çª÷ªk(Bubnov-Galerkin Method)
¦b°t«´ÝȪk¤¤³Ì¦³¦Wªº¤èªk¡A¥i¯à´N¬O¤Ú¿Õ¤Ò--¸¯°Çª÷ªk¡C¦b³oºØ¤èªk¤¤¡A©w¸q°t«¨ç¼Æ¬°°ò¦¨ç¼Æuj(x)¹ï¥¼©w«Y¼ÆCjªº¾É¨ç¼Æ¡A¥H¼Æ¾Ç¦¡ªí¥Ü¬°
(10-1.10)
¦b³oºØ¤èªk¤¤¡Auj(x)¬°¤@²Õ°ò¦¨ç¼Æ¤§¤@¡A¨Ï±o¦b©Ò¦Ò¼{±±¨îÅé¿n¤º¡A¥ô¦ó¨ç¼Æ³£¥i¥H§Q¥Î³o²Õ°ò¦¨ç¼Æªí¥Ü¤§¡A¡C¦]¦¹¡A·íNÁͪñ©óµL½a¤j®É¡Aªñ¦ü¸Ñ¦b©Ò¦Ò¼{ªºªÅ¶¡¤º§Y¯à¥Nªí¥¿½T¸Ñ¡C
[C] °ª´µ¡X§õ®Ú¼w³Ì¤p¥¤èªk(Gauss-Legendre Least Square Method)
°ª´µ¡X§õ®Ú¼w³Ì¤p¥¤èªkªº°ò¥»Æ[©À¡A¬O§Q¥Î´ÝȪº¥¤è¿n¤À¦¡¬°¹s¡A§ä¥XÅý´Ýȳ̤p¤Æªº¥¼©w«Y¼Æ¡C¡C¥ç§Y¡A
¥Ñ¥H¤WÃö«Y¦¡¡A¥i¥H«Ø¥ßN²Õ¥N¼Æ¤èµ{¦¡¡C³oºØ¤èªk·¥¨ã¦³¼Æ¾Ç·N¸q¡A²z½×¤W¬O±j¢Åý»~®tȱo¥¤è©M¹F³Ì¤p¤Æ¡C¥Ñ¤W¤@¤èµ{¦¡¡A¤ñ¸û°t«¨ç¼Æ¤§©w¸q¡A¥iª¾³oºØ¤èªkªº°t«¨ç¼Æ¬°
(10-1.11)
³Ì¤p¥¤èªk¦b³\¦h¤uµ{À³¥Î¤W±`³Q¨Ï¥Î¡A¦ý¥Ñ©ó¨Ï¥Î´ÝȪº¥¤è¿n¤À¦¡¡A¤]«Ü®e©ö²£¥Í«Ü§xÂZªº¥N¼Æ¤èµ{¦¡¡C
[D] ºD¶qªk(Method of Meoments)
ºD¶qªk³Ì¥ý³QÀ³¥Î¦b«D½u©Êº¯³z(Non-linear Diffusion)¤Î¬yÅé¤O¾Ç¤¤ªº¼h¬yÃä¬É¼h(Laminar Boundary Layer)°ÝÃDªº¸ÑªR¤W¡A°ò¥»¤Wn¨D´ÝȪº³sÄò¶¥¦¸ºD¶q¬°¹s¡C¥ç§Y°t«¨ç¼Æ¬°
(10-1.12)
²Ä¤@¶¥ªñ¦üºD¶qªkªºµ²ªG¡A»P¦Ò¼{¾ãӰ϶¡µø¬°¤@Ó¤l°Ï¶¡ªº°Ï¶¡ªk¬Û¦P¡A³oºØªñ¦üªk¦b¼h¬yÃä¬É¼h°ÝÃDªº¸ÑªR¤W¥çºÙ¬°¶¾¥dªù¤ÎÁ¡»¨´Ëªñ¦üªk(von
Karman & Pohlhausen Similarity)¡C
[E] °Æ°Ï¶¡ªk(Subdomain Method)
°Æ°Ï¶¡ªk¬O±Nì¨Óªº°Ï¶¡(0¡A1)¤À³Î¦¨NӰư϶¡¡A¨Ã©w¸q°t«¨ç¼Æ¬°
(10-1.13)
¨Ò10-1
°t«´ÝȪk
¸Õ§Q¥Î¦UºØ¤£¦Pªº°t«´ÝȪk¸ÑÃä¬Éȱ`·L¤À¤èµ{¦¡(BVP-ODE)
µù¡G¥¿½T¸Ñ¬°
[¸Ñ]
[A] N¡×1¡F¡F´ÝȪí¥Ü¦¡¬°
®Ú¾ÚMWRªº°ò¥»ì²z¡G¡A¥H¤U¥H¦UºØ¤£¦P°t«¨ç¼Æ¡A«Ø¥ß¥¼©w«Y¼ÆC2ªºÈ¡C
(i) °t¸mªk¡G°t«¨ç¼Æ¬°W¡×£_(x¡Ðx1)
¥O°t¸mÂIx1¡×0.5¡Q±oR¡×2 C2¡Ð0.5¡×0¡A§YC2¡×0.25¡Aªñ¦ü¨ç¼Æ¬°
Y¥Ox1¡×0.6¡Q«h±oC2¡×0.3¡Cªñ¦ü¨ç¼Æ¬°
ª`·N¡G°t¸mªk©Ò±oµ²ªG·|¦]°t¸mÂI¦ì¸mªº¿ï¾Ü¦Ó²§¡C
(ii) ¤Ú¿Õ¤Ò¡Ð¸¯°Çª÷ªk¡G°t«¨ç¼Æ¬°
¬G¡F¡@
¡C
(iii) ³Ì¤p¥¤èªk¡G°t«¨ç¼Æ¬°
¬G¡F ¡@
¡C
(iv) ºD¶qªk¡G°t«¨ç¼Æ¬°
±o¨ì¡F ¡@
¡C
(v) °Æ°Ï¶¡ªk¡G°t«¨ç¼Æ¬°W(x)¡×1¡F0¡Õx¡Õ1
±o¨ì¡F ¡@
¡C
[B] N¡×2¡F¦Ò¼{¤G¶¥ªñ¦ü¨ç¼Æ¡A§Y¨úN=2¡Q¥Ñ¤èµ{¦¡(10-1.5)±o¤G¶¥ªñ¦ü¸Ñ¬°
¥N¦^ì·L¤À¤èµ{¦¡¡A±o¨ì´ÝȬ°
(i) °t¸mªk¡G°t«¨ç¼Æ¬°¡Fj¡×1¡A2
¥O°t¸mÂI¬°¤Î
¡Q«h±o°t¸mÂI´ÝȬ°
¸Ñ¤§¡A±o¡A¥B
¡A¥N¦^ìªñ¦ü¨ç¼Æ¤èµ{¦¡¡A±o¨ì·L¤À¤èµ{¦¡ªº¤G¶¥ªñ¦ü¸Ñ¬°
»P¥¿½T¸Ñ¬Û¦P¡C
(ii) ¤Ú¿Õ¤Ò¡Ð¸¯°Çª÷ªk¡G°t«¨ç¼Æ¬°
°t«¿n¤À¦¡¥i¥H¤À¦¨¨â²Õ
¸Ñ¥H¤W¤GÁp¥ß¤èµ{¦¡¡A±o¨ì¡A
¡C¥ç§Yªñ¦ü¸Ñ¬°
¥ç»P¥¿½T¸Ñ§¹¥þ¬Û¦P¡C
ªí10-1.1 °t¸mªk»P¸¯°Çª÷ªk·Ç½T«×¤§¤ñ¸û
x |
¥¿½T¸Ñ |
N=1 |
N=2 |
||
°t¸mªk* |
¸¯°Çª÷ªk |
°t¸mªk |
¸¯°Çª÷ªk |
||
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |
0.9168 0.8347 0.7545 0.6773 0.6042 0.5360 0.4738 0.4187 0.3715 |
0.908 0.822 0.742 0.668 0.600 0.538 0.482 0.432 0.388 |
0.908 0.822 0.742 0.668 0.600 0.538 0.482 0.432 0.388 |
0.9168 0.8347 0.7545 0.6773 0.6042 0.5360 0.4738 0.4187 0.3715 |
0.9168 0.8347 0.7545 0.6773 0.6042 0.5360 0.4738 0.4187 0.3715 |
¡¯ °t¸mªkN¡×1®É¡A°t¸mÂI¿ï¥Îx¡×0.6¡QY°t¸mÂI¿ï¥Îx¡×0.5¡A«hµ²ªG²¤®t¡C
¥Ñ¥»¨Ò¥iµo²{¦UºØ°t«´ÝȪk§¡¯à«Ü§Ö¦aÀò±o¦¹°ÝÃDªºªñ¦ü¸Ñ¡C¦ý¤@¯ë¦Ó¨¥¸û§C¶¥ªºªñ¦ü¸Ñ¡A¥H¸¯°Çª÷ªk¯àÀò±o¸û¨Îªºµ²ªG¡C°ª¶¥ªñ¦ü¸Ñ«h¦U¤èªk©Ò±oµ²ªG³£¬Û·í·Ç½T¡A¦ý¥Ñ©ó°t¸mªk¥u»Ý¸Ñ¤@²Õ¥N¼ÆÁp¥ß¤èµ{¦¡¡A§Y¥i¨D±o«Y¼Æ¡A¦Ó¨ä¥L¤èªk«h§¡¶·¥ý§@¿n¤À³B²z¡A¦]¦¹¡ANȸû¤j®É¡A°t¸mªk³Ì¨ã¨Ï¥Î¼ç¤O¡A¦Ó¥Bµ{¦¡³]p¤]³Ì®e©ö¡C¦]¦¹¡A¥»³¹¨ä¾l¦U¸`±NµÛ«©ó¦UºØ¼Æ¾Ç°t¸mªkªº¤¶²Ð¡C
¬°¤F»¡©ú°t«´ÝȪkªº°ò¥»¨Ï¥Î¤èªk¡A¨ä¦¸¦A¥H¶ê¬Wª¬Ä²´C²É¤lªº®|¦V½è¶Çº¯³z¤Îµ¥·Ån¦¸«D¥i°f¤ÏÀ³¼Ò¦¡¬°¨Ò¡A»¡©ú°t«´ÝȪkªºÀ³¥Î¤èªk¡C
(10-2.1)
BC1 x¡×0®É¡A ¡×0
BC2 x¡×1®É¡A y¡×1
¨ä¤¤y¡×C¡þCs¬°µL¦]¦¸¿@«×¡Ax¡×r¡þR¬°µL¦]¦¸¥b®|¡AºÙ¬°§Æ²Á¼Æ(Thiele modulus)¡CIJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°
(10-2.2)
[A] ³Ì§C¶¥°t«´ÝȪky1(x)
·ín=1®É¡A¦Ò¼{º¡¨¬¨âÓÃä¬É±ø¥ó§Y¤èµ{¦¡(10-2.1)ªº³Ì§C¶¥ªñ¦ü¨ç¼Æ¬°y1(x)=1+a1(1-x2)¡A¥N¤J¤èµ{¦¡(10-2.1)±o¨ì´ÝȪí¥Ü¦¡¬°
(10-2.3)
®Ú¾Ú°t«´ÝȪkªº©w¸q
©Î (10-2.4)
°t¸mªk¡G°t«¨ç¼Æ¬° ¡F¥Ox1=1/2¡A¥N¤J¤èµ{¦¡(10-2.4)±o¨ì
¡A¬G±o¨ì¥¼©w«Y¼Æa1ȤΤ@¶¥ªñ¦ü¨ç¼Æy1(x)¬°
(10-2.5)
IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C
¸¯°Çª÷ªk¡G°t«¨ç¼Æ¬°¡A©Î
¡F¥N¤J¤èµ{¦¡(10-2.4)±o¨ì
¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1ȤΤ@¶¥ªñ¦ü¨ç¼Æy1(x)¬°
(10-2.6)
IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C
°Æ°Ï¶¡ªk¡G°t«¨ç¼Æ¬° ¡F
¡C¥N¤J¤èµ{¦¡(10-2.4)±o¨ì
¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1ȤΤ@¶¥ªñ¦ü¨ç¼Æy1(x)¬°
(10-2.7)
IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C
ºD¶qªk¡G°t«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.4)±o¨ì
¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1ȤΤ@¶¥ªñ¦ü¨ç¼Æy1(x)¬°
(10-2.8)
IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C
³Ì¤p¥¤èªk¡G°t«¨ç¼Æ¬°´Ýȹ良©w«Y¼Æ¤§·L¤À¡A¡A©Î
¡F±N°t«¨ç¼Æ¥N¤J¤èµ{¦¡(10-2.4)±o¨ì
¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1ȤΤ@¶¥ªñ¦ü¨ç¼Æy1(x)¬°
(10-2.9)
IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C
¤èªk¤ñ¸û: ·í®É¡A¤ñ¸û¦UºØ¤èªk©Ò±oµ²ªG¡A¦pªí10-2.1©Ò¥Ü¡C¥i¥Hµo²{¸¯°Çª÷ªkµ²ªG³Ì¨Î¡C
ªí10-2.1 ¤@¶¥°t«´ÝȪk©Ò±oµ²ªG¤§¤ñ¸û
[B] °ª¶¥°t«´ÝȪkyN(x)
·ín=1®É¡A¦Ò¼{º¡¨¬¨âÓÃä¬É±ø¥ó¤Î¤èµ{¦¡(10-2.1)ªºN¶¥ªñ¦ü¨ç¼Æ¬°¡A¨ä¤¤
¬°º¡¨¬·L¤À¤èµ{¦¡Ãä¬É±ø¥óªº¨ç¼Æ¡A
¬°º¡¨¬·L¤À¤èµ{¦¡§¡¤ÃÃä¬É±ø¥ó(homogeneous boundary conditions)ªº¨ç¼Æ¡C´N¤èµ{¦¡(10-2.1)¦Ó¨¥¡A
(10-2.10)
©Î±NN¶¥ªñ¦ü¨ç¼Æ¼g¦¨¤U¦¡¡A¨ä¤¤¥O
(10-2.11)
¤èµ{¦¡(10-2.1)¥i¥H§ï¼g¦¨
(10-2.12)
±N¤èµ{¦¡(10-2.11)¥N¤J¤èµ{¦¡(10-2.12)¡A¸g¾ã²z«á¡A±o¨ì
(10-2.13)
®Ú¾Ú°t«´ÝȪkªº©w¸q
§Y ©Î¦A¼g¦¨uªº¨ç¼Æ¬°
¡Aj=1,2,¡K,N (10-2.14)
±N¤èµ{¦¡(10-2.13)¥N¤J¤èµ{¦¡(10-2.14)¡A¿n¤Àµ²ªG¥i¥H¼g¦¨¥H¤Uªº¯x°}§Î¦¡¡A
(10-2.15)
¨ä¤¤¯x°}A¡AB¡A¤ÎC¤À§O¦]°t«¨ç¼ÆWj(u)ªº©w¸q¦Ó·|¦³§ïÅÜ¡C¸Ñ¤èµ{¦¡(10-2.15)±o¨ì¥¼©w«Y¼Æ°}¦C¬°
(10-2.16)
±N¦¹µ²ªG¥N¤J¤èµ{¦¡(10-2.11)¡A§Y¥i±o¨ì·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡C¦P®É¡A¤]¥i¥H¨D±oIJ´Cªº¦³®Ä«×«Y¼Æ¬°
(10-2.17)
°t¸mªk¡G°t«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.13)¤Î¤èµ{¦¡(10-2.14)¡A±o¨ì
©Î
»P¤èµ{¦¡(10-2.15)¤ñ¸û¡A±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°
(10-2.18)
Y¦Ò¼{¨Ï¥Îµ¥¶¡¶Z°t¸mÂI¡A¥Ñ©óu0=0¡AuN+1=1¡A«h¡A¥N¦^¤èµ{¦¡(10-2.17)¡A±o¨ì
(10-2.19)
¸¯°Çª÷ªk¡G°t«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.13)¤Î¤èµ{¦¡(10-2.14)¡A±o¨ì
¡A¿n¤À®i¶}«á¡A±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°
(10-2.20)
°Æ°Ï¶¡ªk¡G°t«¨ç¼Æ¬°¡F¨ä¥L°Ï¶¡
¡C¥N¤J¤èµ{¦¡(10-2.14)¡A±o¨ì
¡C±N¤èµ{¦¡(10-2.13)¥N¤J¡A¿n¤À«á±o¨ì±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°
(10-2.21)
Y¦Ò¼{¨Ï¥Îµ¥¶¡¶Z°Ï¶¡¡A¥Ñ©óu0=0¡AuN+1=1¡A«h¡C
ºD¶qªk¡G°t«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.13)¤Î¤èµ{¦¡(10-2.14)¡A±o¨ì
¿n¤À«á±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°
(10-2.22)
³Ì¤p¥¤èªk¡G°t«¨ç¼Æ¬°´Ýȹ良©w«Y¼Æ¤§·L¤À¡A¡A©Î
¡F±N¦¹°t«¨ç¼Æ¥N¤J¤èµ{¦¡(10-2.14)¡A¨Ã±N¤èµ{¦¡(10-2.13)¥N¤J¡A¿n¤À«á¥i¥H±o¨ì¯x°}A¡AB¡A¤ÎC¡C¥Ñ©ó¿n¤À¤¾ªø¡A¤£¤©¦C¥X¡C
pºâ¤èªk»P¨Ï¥Îµ¦²¤
°t«´ÝȪkªºpºâ¤èªk¡A¥i¥HÂk¯Ç¦p¤U:
(1) §Q¥Î¤@Ó¦h¶µ¦¡§@¬°·L¤À¤èµ{¦¡L{y,u}¡×0ªºªñ¦ü¸Ñ¡F
(2) ¥N¤J·L¤À¤èµ{¦¡L{y,u}¡×0¡A¨D¥X´ÝȪºªí¥Ü¦¡R¡×L{yN,u
}-L{y,u}¡Q
(3) ¿ï¾Ü¨Ï¥Îªº°t«´ÝȪk¡A©w¸q°t«¨ç¼Æ¡F
(4) ¨Ï´ÝȪº°t«¿n¤ÀȬ°¹s
(5) «Ø¥ßNÓ¥¼©w«Y¼Æ°}¦CaªºÁp¥ß¤èµ{¦¡¡F
(6) §Q¥Î¼ÆÈ¤èªk¸ÑÁp¥ß¤èµ{¦¡¡A§ä¥Xªñ¦ü¦h¶µ¦¡ªº¥¼©w«Y¼Æ°}¦Ca¡Q
(7) ¥N¦^ìªñ¦ü¦h¶µ¦¡¡A«Ø¥ß·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡Q
(8) §Q¥Î¾A·í¤º´¡ªk¡Apºâ·L¤À¤èµ{¦¡¦b¯S©w¦ì¸mªº¸Ñ¡C
¥H¤W©Òz¤§pºâÅÞ¿è¦p¹Ï10-2.12©Ò¥Ü¡F§Q¥ÎExcel©Î°ª´µ®ø¥hªk¡A³£¥i¥H«Ü»´©ö¦a«Ø¥ß©Ò»Ýªºµ{¦¡¡C§Q¥ÎExcel©Ò«Ø¥ßµ{¦¡¦p¹Ï10-2.2©Ò¥Ü¡Cµ{¦¡½s¼g²Ó¸`¥i°Ñ¦Ò¥»®Ñ©Òªþ¥úºÐ¡C
¹Ï10-2.1 °t«´ÝȪkªºÅÞ¿è¹Ï
¹Ï10-2.2 (a) §Q¥ÎExcel½s¼g°t«´ÝȪkªº½d¨Ò¡A°t¸mªk¡C±N·L¤À¤èµ{¦¡ªº¨D¸Ñ¡AÅܦ¨Â²³æªº¯x°}¹Bºâ¡C§Q¥ÎExcel§Y¥i»´©ö¦a§¹¦¨¥ô°È¡AN=3©Ò±oµ²ªG»P¥¿½T¸Ñ¬Û·í¤@P¡C
¹Ï10-2.2 (b)
§Q¥ÎExcel½s¼g°t«´ÝȪkªº½d¨Ò¡A°t¸mªk¡C
N=5©Ò±oµ²ªG¡C
¤W¤@¸`¤¤¡A§Ú̧Q¥Î²³æªº½u©Ê°ÝÃD¬°¨Ò¡A»¡©ú¤F¦UºØMWR°t«´ÝȪk¤Î¨ä¯S©Ê¡A¥»¸`¤¤«h±N°w¹ï°t¸mªk§@¸û¸ÔºÉªº°Q½×¡C¨Ï¥Î°t¸mªkªº®ÉÔ¡Aªñ¦ü¨ç¼Æ¤Î°t¸mÂIªº¿ï¾Ü¤èªk¤jP¥i¤À¦¨¤TÃþ¡G
(i) ¤º³¡°t¸mªk(Interior Collocation)
©Ò¿ï¥Îªºªñ¦ü¨ç¼Æº¡¨¬Ãä¬É±ø¥ó¡A°t¸mÂI¿ï¾Ü¦ì©ó·L¤À¤èµ{¦¡©Ò¦Ò¼{ªº°Ï¶¡¤º¡A¥H¨M©w¥¼©w«Y¼Æ¡C
(ii) Ãä¬É°t¸mªk(Boundary Collocation)
©Ò¿ï¥Îªºªñ¦ü¨ç¼Æº¡¨¬ì·L¤À¤èµ{¦¡¡A¦Ó°t¸mÂI«h¦bÃä¬É¤W¿ï¨ú¡A¥H¨M©w¥¼©w«Y¼Æ¡C
(iii) ²V©M°t¸mªk(Mixed Collocation)
©Ò¿ï¥Îªºªñ¦ü¨ç¼Æ¬°¥ô·N¨ç¼Æ¡A¨ä¥¼©w«Y¼Æ¥Ñ©Ò¦Ò¼{°Ï¶¡¤º¤ÎÃä¬É¤W¿ï©wªº°t¸mÂI¨Ó¨M©w¡C
°t¸mªk±`¨£©óÃä¬Éȱ`·L¤À¤èµ{¦¡¡B¯S¼xȰÝÃD(Eigenvalue Problem)¤Î°¾·L¤Àªº¨D¸Ñ¡C¥H¤U¦A§Q¥Î´XÓ¨ÒÃD¥[¥H»¡©ú¡C
¨Ò10-2
¤@¦¸¤¸¼ö¶Ç¾É(K¡Ú±`¼Æ)
¤@¥ªO«p«×¬°L¡A¨â°¼·Å«×¤À§O¬°T0¤ÎT1¡C¨ä¯à¶q¥¿Å¤èµ{¦¡¬°
¡Q0¡Õx¡ÕL (10-3.1)
BC1. T(0)¡×T0
BC2. T(L)¡×T1
¦¹¥ªOªº¼ö¶Ç¾É²v»P·Å«×Ãö«Y¬°k(T)¡×k0¡Ï£\(T¡ÐT0)¡A¸Õ¨D¨ä·Å«×¤À¥¬¡C
[¸Ñ] ¥OµL¦]¦¸·Å«×¤ÎµL¦]¦¸ªø«×¤À§O¬°
«hì·L¤À¤èµ{¦¡¥i¥H§ï¼g¦¨
¡Q0¡Õ£i¡Õ1 (10-3.2)
£c(0)¡×1
£c(1)¡×1
¨ä¤¤a¡×£\(T¡ÐT0)¡þk0¡Q¬°¤F²¤Æ»¡©ú°_¨£¡A¥Oa¡×1¡A«hº¡¨¬Ãä¬É±ø¥óªº°ò¦¨ç¼Æ¡A¥i¥H¼g¦¨
(10-3.3)
Y¨úN¡×2¡A¨ä´ÝȬ°
(10-3.4)
°t¸mÂI¨ú¬°¤Î
¡A¥N¤J´ÝȪí¥Ü¦¡¡A¨ÃÅý´ÝȦb°t¸mÂI¤W¬°0¡A«h±o
C1¡×¡Ð0.5992
C2¡×0.1916
¬G±o£cªº¤G¶¥ªñ¦ü¸Ñ¬°
©Î·Å«×¤À¥¬ªñ¦ü¸Ñ¬°
¨Ò10-3
«D½u©Ê·L¤À¤èµ{¦¡
¸Õ§Q¥Î¼Æ¾Ç°t¸mªk¸Ñ«D½u©Ê·L¤À¤èµ{¦¡¡C
¡Q0¡Õ£c¡Õ1 (10-3.5)
BC1 £c(0)¡×0
BC2 £c(1)¡×0
[¸Ñ] º¡¨¬Ãä¬É±ø¥óªº°ò¦¨ç¼Æ¥i¬°
(10-3.6)
¦Ò¼{³Ì²³æªº±¡ªp¡AN¡×1¡A§Y¡C«h´ÝȬ°
(10-3.7)
¨ú°t¸mÂI¬°x¡×0.5¡Q¥OR¦b°t¸mÂI¤W¬°0¡A±o¨ì
§Q¥Î¤û¹yªk¨D±o¤W¦¡ªº¸Ñ¬°C1¡×0.44712¡C¬G£c1¬°
»P¥¿½T¸Ñ¤§¤ñ¸û¦p¤Uªí¡Aµ²ªGÅã¥Ü¥Î³Ì²³æªºªñ¦ü¸Ñ¡A®ÄªGÁÙ¤£¿ù©O¡I
x |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
¥¿½T¸Ñ |
-0.0414 |
-0.0733 |
-0.0958 |
-0.1092 |
-0.1137 |
£c1 |
-0.0402 |
-0.0715 |
-0.0939 |
-0.1073 |
-0.1178 |
»~®t% |
2.8 |
2.4 |
1.99 |
1.73 |
1.69 |
°t¸mªk¨Ï¥Î¤è«K¡A¦ý¨ä·Ç½T«×«o¨M©w©ó°ò¦¨ç¼Æªº¿ï¾Ü¡BNȪº¤j¤p¤Î°t¸mÂIªº¿ï¾Ü¡C1938¦~ÄõY´µ(Lanczos)´£Ä³§Q¥Î¥¿¥æ¯Å¼Æ(Orthogonal Polynomials)§@¬°°ò¦¨ç¼Æ¡A¨Ã¥H¥¿¥æ¯Å¼Æªº®Ú§@¬°°t¸mÂI¡Q«á¨Ó¦A¸g¹LÃQ¼w´Ë¤Î¥v³£µØ(Villadsen and Stewart)ªº§ï¶i¡A¥Ø«e¤w¦¨¬°³Q¨Ï¥Î±o³Ì¼sªxªº°t¸mªk¡A³qºÙ¬°¡u¥¿¥æ°t¸mªk¡v(Orthogonal Collocation Method)¡C
¥¿¥æ°t¸mªk°ò¥»¤W¬O¥H¥¿¥æ¯Å¼Æ§@¬°°ò¦¨ç¼Æ¡Q¦pªG°ò¦¨ç¼Æªº³Ì°ª¦¸¼Æ¬°N¡A«h§Q¥ÎN¡Ï1¦¸ªº¥¿¥æ¯Å¼Æªº®Ú§@¬°°t¸mÂI¡C¥Ñ©ó¥¿¥æ¯Å¼Æ¨ã¦³³\¦h©ö©ó³B²zªº¼Æ¾Ç¯S©Ê¡A¦]¦¹¡A¥¿¥æ°t¸mªk°ò¥»ì²zÁö»P«ez°t¸mªk§¹¥þ¤@P¡A¦ý¨Ï¥Î¤W«o¥iµ½¥Î¥¿¥æ¯Å¼Æªº¯S©Ê¡A¨Ï³B²z¤èªk§ó¬°Â²¤Æ¡A§ó¾A©ó§Q¥Îpºâ¾÷¨Ó¨D¸Ñ¡C
°²³]¤@·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡A¥i¥H§Q¥Î¤@²Õ¥¿¥æ¯Å¼ÆP(x)ªº½u©Ê©M¨Óªí¥Ü¡A
(10-4.1)
¦b¥H¤Wªº¤èµ{¦¡¤¤Á`¦@¦³N¡Ï2Ó¥¼©w«Y¼Æ¡A¦ýªñ¦ü¸ÑyNªº¤Uµù¼Ð¥u¼g¦¨N¡A¬O¥Ñ©óÃä¬Éȱ`·L¤À¤èµ{¦¡(BVP ODE)ªº¨âÓÃä¬É±ø¥ó¤w¸g¥i¥H¨M©w¨âÓ
È¡A¥u»Ýn¦A§Q¥ÎNÓ¤º³¡°t¸mÂI§Y¥i¥H¨M©w©Ò¦³
È¡A¬G¼g¦¨yN¡F¨ä¤¤¡AN¥Nªí©Ò»Ýªº¤º³¡°t¸mÂI¼Æ¡C
¥¿¥æ¯Å¼ÆP(x)¥i¥H¼g¦¨¯Å¼Æªº¤@¯ëªí¥Ü¦¡
(10-4.2)
¨ä¥¿¥æ©Ê½è¬°
¡Qk¡×0¡A1¡A2¡A¡K¡K¡Am¡Ð1 (10-4.3)
¨ä¤¤(a¡Ab)¬°Ãä¬Éȱ`·L¤À¤èµ{¦¡ªº©w¸q½d³ò¡A³q±`³£¥ý§Q¥Î®y¼ÐÅÜ´«Âಾ¦¨(0¡A1)¡A¥H«K³B²z¡C
±N¤èµ{¦¡(10-4.2)¥N¤J¤èµ{¦¡(10-4.1)¤¤¡A¥i±N°ò¦¨ç¼ÆyN§ï¼g¦¨¥H¤Uªº¤è¦¡¡A¥H§Qpºâ³B²z¡G
(10-4.4)
°²³]¥i¥H§Q¥Î¾A·í¤èªk±o¨ì°t¸mÂI¡A«h¦b°t¸mÂIxj¦ì¸m¤Wªº¨ç¼ÆÈyN¬°
¡Qj¡×1¡A2¡A¡K¡K¡AN¡Ï2 (10-4.5)
x1¡×0¡A xN¡Ï2¡×1
¦Ó¦b°t¸mÂIxj¦ì¸m¤W¡AyNªº¤@¦¸¤Î¤G¦¸¾É¨ç¼Æ¡A¥ç¥i¤À§O¥Ñ¤èµ{¦¡(10-4.4)¹ïx§@·L¤À¡A±o¨ì
(10-4.6)
(10-4.7)
¥O¯x°}¡A
¤Î
¤À§O¬°
(10-4.8)
¥O°}¦C¡A
¡A«h¤èµ{¦¡(10-4.5)¡A(10-4.6)¤Î(10-4.7)¤À§O§ï¼g¦¨¯x°}²Å¸¹«á¡A±o¨ì
(10-4.9)
(10-4.10)
(10-4.11)
®Ú¾Ú¤èµ{¦¡(10-4.8)¥iª¾¡AY¤wª¾°t¸mÂI¦ì¸m¡A«h¯x°}¡A
¤Î
³£¥i¥H«Ü§Öªºpºâ¥X¨Ó¡C¦Ó¥Ñ¤èµ{¦¡(10-4.9)¡A¥i¥H±N¥¼©w¸qªº«Y¼Æ°}¦C
ªí¥Ü¦¨°t¸mÂI¤Wªº¨ç¼ÆÈ
ªºÃö«Y
(10-4.12)
±N¤W¦¡¥N¦^¤èµ{¦¡(10-4.10)¤Î¤èµ{¦¡(10-4.11)¤¤¡A¥i¥H¤À§O±o¨ì
(10-4.13)
(10-4.14)
®Ú¾Ú¤èµ{¦¡(10-4.8)¥iª¾¡AY¿ï©w¤@²Õ°t¸mÂI¡A«h
¡B
¤Î
§¡¥iª½±µ¨D±o¡A¦Ó¤W¤G¤èµ{¦¡¤¤
¡B
¤]³£¥i¥H§Q¥Î¯x°}¾Þ§@«Ü§Öªº¨D±o¡C¦]¦¹¡A¥i±N·L¤À¤èµ{¦¡¤¤ªº¤@¦¸¤Î¤G¦¸¾É¨ç¼Æ¶µ¡A³£ªí¥Ü¦¨°t¸mÂI¦ì¸mªº¨ç¼ÆÈ
ªº½u©Ê¨ç¼Æ¡A¦Ó±Nì·L¤À¤èµ{¦¡Âà¤Æ¦¨¤@²ÕÁp¥ß¥N¼Æ¤èµ{¦¡¡C¯x°}A¤ÎB§YºÙ¬°·L¤À¾Þ§@¯x°}¡C§Q¥Î·L¤À¾Þ§@¯x°}¡A¥i¥H±N·L¤À¤èµ{¦¡§ï¼g¦¨¨ç¼ÆÈ
ªº½u©Ê¨ç¼Æ¡A¥ç§YÅܦ¨¤@²Õ½u©ÊÁp¥ß¤èµ{¦¡¡C§Q¥Î°ª´µ®ø¥hªk©Î¾A·í¼ÆÈ¤èªk¡A§Y¥i¨D±o¦b°t¸mÂI³Bªº¨ç¼ÆÈ
¡C
¥H¤W©Ò»¡©úªº¥¿¥æ°t¸mªk°ò¥»ÅÞ¿è¡A¥i¥HÂk¯Ç¦p¤U¡G
(1)
§Q¥Î¥¿¥æ¦h¶µ¦¡ªº¸Ñ¡A±o¨ì¤@²Õ°t¸mÂI¡F
(2)
§Q¥Î¤èµ{¦¡(10-4.8)¤Î°t¸mÂI¡A«Ø¥ß¯x°}
¡A
¤Î
¡F
(3)
«Ø¥ß¤@¦¸·L¤À¾Þ§@¯x°}¡A¨ä¤¤
¡F
(4)
«Ø¥ß¤G¦¸·L¤À¾Þ§@¯x°}¡A¨ä¤¤
¡F
(5)
§Q¥ÎÃä¬É±ø¥ó«Ø¥ßy1¤ÎyN+2ªºªí¥Ü¦¡(¦b¥»³¹²Ä¤¸`¤¤¸Ô²Ó»¡©ú)¡F
(6)
±N·L¤À¾Þ§@¯x°}¥N¤Jì·L¤À¤èµ{¦¡¡A«Ø¥ß¨ç¼ÆÈªºÁp¥ß¤èµ{¦¡¡F
(7)
§Q¥Î°ª´µ®ø¥hªk©Î¨ä¥L¾A·í¼ÆÈ¤èªk¡A¨D¸Ñ¨ç¼ÆÈªºÁp¥ß¤èµ{¦¡¡F
(8)
§Q¥Î¾A·í¤º´¡ªk¡A«Ø¥ß¯S©wÂI¤§¨ç¼ÆÈy¡C
¨Ò10-4
§Q¥Î°t¸mªk¸ÑÃä¬Éȱ`·L¤À¤èµ{¦¡
BC1 y(0)¡×0
BC2 y(1)¡×1
[¸Ñ] ¬°¤F»¡©ú°_¨£¡A§ÚÌ¥u¦Ò¼{³Ì²³æªº±¡ªpN¡×1¡A«hN¡Ï2Ó°t¸mÂI¤À§O¬°¡A
¤Î
¡C®Ú¾Ú¤èµ{¦¡(10-4.8)±o
¡A
¤Î
¤À§O¬°
¯x°}ªº¤Ï¯x°}
¥i§Q¥Î°ª´µ¬ù¥¹ªk¨D±o¬°
¦]¦¹¡A·L¤À¾Þ§@¯x°}¥i¤À§O®Ú¾Ú¨ä©w¸q¨D±o¡C
¥N¦^ì·L¤À¤èµ{¦¡±o¨ì
¡@¡Qj¡×1¡A2¡A¡K¡K¡AN¡Ï2
¥Ñ©óy1¡×0¡AyN¡Ï2¡×y3¡×1¡A¥u³Ñ¤Uy2¥¼ª¾¡A¦]¦¹¡A¥u¦Ò¼{N¡×1¥Bj¡×2ªº±¡ªp¡A¥Ñ¤W¦¡±o
±Ny1¤Îy3¥N¤J¡A±o¡A¥Ñ»Py2¡Ö0¡A¦]¦¹¡A¥i¥H±o¨ìy2¡×0.57916¡C
§Q¥Î³oºØ³B²z¤è¦¡¡A§ÚÌ¥iÀò±o¦U°t¸mÂI¦ì¸mªºyÈ¡CY»Ý¨ä¥L¦ì¸mªºyÈ¡A«h¥i§Q¥Î¥»®Ñ²Ä¤T³¹©Ò¤¶²Ðªº´¡Èªk¨D¤§¡C»Ýn¨Dyªº¿n¤ÀÈ¡A«h¥i§Q¥Î¥»®Ñ²Ä¤»³¹©Ò¤¶²Ðªº°ª´µ¿n¤Àªk(Gauss Quadrature)¨D¤§¡C
·L¤À¤èµ{¦¡ªºÃä¬É±ø¥ó³q±`¥i¤À¬°¤T¤jÃþ¡A¥»¸`±N¥H¹ê¨Ò¨Ó»¡©ú¨Ï¥Î¥¿¥æ°t¸mªk®É¡AÃä¬É±ø¥óªº³B²z¤èªk¡C
¦Ò¼{¤@±`·L¤À¤èµ{¦¡¬°¨Ò
(10-5.1)
¨ä¥¿½T¸Ñ¬°
(10-5.2)
§Q¥Î¤W¤@¸`©Ò¤¶²Ðªº³B²z¤èªk¡A¤èµ{¦¡(10-5.1)¥i¥H³Q§ï¼g¦¨
¡Qj¡×1¡A2¡A¡K¡K¡AN+1 (10-5.3)
©Î±Ny1¤ÎyN+1²¾¨ì¤èµ{¦¡¥k°¼¡A§ï¼g¦¨
(10-5.4)
¨ä¤¤£_jiºÙ¬°Kronecker Delta¡A©w¸q¬°
(10-5.5)
¤èµ{¦¡(10-5.4)¤¤¡Ay1¤ÎyN¡Ï2³q±`§Q¥ÎÃä¬É±ø¥ó¨M©w¤§¡A¥H¤U¤À§O§Q¥Î¦UºØ¤£¦PªºÃä¬É±ø¥ó¥[¥H»¡©ú¡C
[A] Ãä¬É±ø¥ó(I ¢w I)
¨â°¼Ãä¬É±ø¥ó§¡¬°²Ä¤@Ãþ(Dirichlet)Ãä¬É±ø¥ó¡G
BC1 y(0)¡×0¡Q x¡×0
BC2 y(1)¡×1¡Q x¡×1 (10-5.6)
¤W¦¡¥i§ï¼g¦¨y1¡×0¡AyN¡Ï2¡×1¡A¥N¤J¤èµ{¦¡(10-5.4)±o¨ì
©Î§Q¥Î¯x°}²Å¸¹Â²¼g¦¨
©Î¶i¤@¨B²¤Æ¡A¨Ã¼g¦¨¥H¤Uªº¯x°}¤èµ{¦¡
(10-5.7)
¨ä¤¤
¤èµ{¦¡(10-5.7)¥Nªí¤@²Õ½u©ÊÁp¥ß¤èµ{¦¡¡A¥i§Q¥Î°ª´µ®ø¥hªk¸Ñ¤§¡C
[B] Ãä¬É±ø¥ó(I ¢w II)
ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤@ÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤GÃþÃä¬É±ø¥ó¡G
BC1 y(0)¡×0¡Q x¡×0
BC2 ¡Q x¡×1 (10-5.8)
Y¥Hyiªí¥Ü¡A«h±o¨ì
¥Ñ¤W¦¡¨D±oyN¡Ï2¬°
¥N¦^¤èµ{¦¡(10-5.4)¡A±o¨ì
j¡×2¡A3¡A¡K¡K¡AN¡Ï1
©Î¼g¦¨
(10-5.9)
¨ä¤¤
[C] Ãä¬É±ø¥ó(I ¢w III)
ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤@ÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤TÃþÃä¬É±ø¥ó¡G
BC1 y(0)¡×0¡Q x¡×0
BC2 ¡Q x¡×1 (10-5.10)
BC2¥i§Q¥Î¤@¦¸¾É¨ç¼Æ¾Þ§@¯x°}ªí¥Ü¬°
¾ã²z¤§¡A¨Ã§Q¥ÎBC1(y1¡×0)¡C¥i¥H±o¨ì
¥N¤J¤èµ{¦¡(10-5.4)±o¨ì
©Î¥H¯x°}²Å¸¹ªí¥Ü¬°
(10-5.11)
¨ä¤¤
[D] Ãä¬É±ø¥ó(II ¢w I)
ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤GÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤@ÃþÃä¬É±ø¥ó¡G
BC1 ¡Q x¡×0
BC2 y¡×1¡Q x¡×1 (10-5.12)
¥é¥H¤W³B²z¡A±o¨ì
©Î
(10-5.13)
[E] Ãä¬É±ø¥ó(II ¢w II)
¨â°¼Ãä¬É±ø¥ó§¡¬°²Ä¤GÃþÃä¬É±ø¥ó¡G
BC1 ¡Q x¡×0
BC2 ¡Q x¡×1 (10-5.14)
¥é¥H¤W³B²z¡A±oy1¤ÎyN¡Ï2¤À§O¬°
©Î±N¤W¦¡¤¤¬A¸¹¤ºªºªí¥Ü¦¡¥Hªí¥Ü¡A¨Ã¼g¦¨
¥N¤J¤èµ{¦¡(10-5.4)±o¨ì
(10-5.15)
[F] Ãä¬É±ø¥ó(II ¢w III)
ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤GÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤TÃþÃä¬É±ø¥ó¡G
BC1 ¡Q x¡×0
BC2 ¡Q x¡×1 (10-5.16)
BC1¤ÎBC2¤À§O¥i¥Î·L¤À¾Þ§@¯x°}¼g¦¨¡G
©Î¾ã²z¦¨
¸Ñ¥H¤WÁp¥ß¤èµ{¦¡¡A±oy1¤ÎyN¡Ï2¤À§O¬°
±N¤W¦¡¥N¤J¤èµ{¦¡(10-5.4)±o¨ì
(10-5.17)
¨ä¤¤
[G] Ãä¬É±ø¥ó(III ¢w III)
¨â°¼Ãä¬É±ø¥ó§¡¬°²Ä¤TÃþÃä¬É±ø¥ó¡G
BC1 ¡Q x¡×0
BC2 ¡Q x¡×1 (10-5.18)
§Q¥Î·L¤À¾Þ§@¯x°}¡A§Y
¡A¥i±NÃä¬É±ø¥ó§ï¼g¦¨
¾ã²z¦¨y1¤ÎyN¡Ï2ªºÁp¥ß½u©Ê¤èµ{¦¡¬°
¥Ñ¥H¤W¤G¤èµ{¦¡¡A¥iÁp¥ß¸Ñ±oy1¤ÎyN¡Ï2¤À§O¬°
©Î¥H²Å¸¹¥Nªí¡A²¼g¦¨
±N¤W¦¡¥N¤J¤èµ{¦¡(10-5.4)¡A¥i¥H±o¨ì
(10-5.19)
¨ä¤¤
¥H¤W«Y®Ú¾Ú±`·L¤À¤èµ{¦¡¬°¨Ò¡A©Ò°µªººt¾É»P»¡©ú¡AŪªÌ°w¹ï¯S©w·L¤À¤èµ{¦¡¨D¸Ñ®É¡A¥i®Ú¾Ú¬Û¦P§@ªk§@¾A·í³B²z¡C
¥¿¥æ°t¸mªk«Y±Ä¥Î¥¿¥æ¦h¶µ¦¡§@¬°°ò¦¨ç¼Æ¡A§Q¥Î¥¿¥æ¦h¶µ¦¡ªº¯S©Ê¡A²¤Æ¼Æ¾Ç°t¸mªkªº³B²zµ{§Ç¡C±`¥Îªº¥¿¥æ¦h¶µ¦¡¥]¬A§õ®Ú¼w¦h¶µ¦¡(Legendre Polynomial)¤Î¥»¸`©Ò¤¶²Ðªº¶®¥i¥²¦h¶µ¦¡(Jacobi Polynomial)µ¥¡C¥H¤U°w¹ï¶®¥i¥²¦h¶µ¦¡ªº¯S©Ê¤Î¦p¦ó§Q¥Î¨ä¯S©Ê¼¶¼gµ{¦¡¡A§@²n»¡©ú¡C
[¢Ï] ¶®¥i¥²¦h¶µ¦¡ªº°ò¥»©w¸q
¶®¥i¥²¦h¶µ¦¡¬O¤@ºØ¨å«¬ªº¥¿¥æ¦h¶µ¦¡¡A¨ä°ò¥»©w¸q¬°
¡Qj¡×0¡A1¡A2¡A¡K¡K¡AN¡Ð1 (10-6.1)
©Îªí¥Ü¦¨
(10-6.2)
¦³Ãö¶®¥i¥²¦h¶µ¦¡ªº¸Ô²Ó»¡©ú¡A½Ð°Ñ¦Ò¤uµ{¼Æ¾Ç®ÑÄy¡C
[¢Ð] ¶®¥i¥²¦h¶µ¦¡ªºÃ¹¼wͺ®æªí¥Üªk
¥Hù¼wͺ®æ¤èµ{¦¡(Rodrigues¡¦ Formula)ªí¥Ü¡A¶®¥i¥²¦h¶µ¦¡¥i¥H¼g¦¨
(10-6.3)
[C] ¶®¥i¥²¦h¶µ¦¡ªº´`§Çpºâ¤½¦¡ªí¥Üªk
¶®¥i¥²¦h¶µ¦¡ªº´`§Çpºâ¤½¦¡(Recurrence formula)¬°
pN = [x - gN(N,a,b)] pN-1
¡V hN(N,a,b) pN-2 ;
p0 = 0 (10-6.4)
;
h1 = 0 ;
[D] ±`¨£ªº¶®¥i¥²¦h¶µ¦¡
±`¨£ªº¶®¥i¥²¦h¶µ¦¡¦p¤Uªí©Ò¥Ü¡G
a |
b |
N=0 |
N=1 |
N=2 |
N=3 |
0 |
0 |
1 |
2x-1 |
6x2-6x+1 |
20x3-30x2+12x-1 |
1 |
0 |
1 |
3x-1 |
10x2-8x+1 |
35x3-45x2+15x-1 |
2 |
0 |
1 |
4x-1 |
15x2-10x+1 |
56x3-63x2+18x-1 |
0 |
1 |
1 |
|
|
|
1 |
1 |
1 |
2x-1 |
6x2-6x+1 |
14x3-21x2+9x-1 |
2 |
1 |
1 |
|
|
|
¨Ò10-5
¶®¥i¥²¦h¶µ¦¡¤§pºâ
¸Õ¨DªºÈ¡C
[¸Ñ]
gN=1/2
¥Ñ¶®¥i¥²¦h¶µ¦¡ªº´`§Çpºâ¤½¦¡(Recurrence formula)pN = [x - gN(N,a,b)] pN-1
¡V hN(N,a,b) pN-2 ¡A
p0 = 0¡Q§Q¥Î¤û¹yªk¨D¶®¥i¥²¦h¶µ¦¡ªº®Ú§@¬°°t¸mÂIxi®É¡A°²³]¤w¸gª¾¹Dx1¡Bx2¡B¡K¡Bxk¦@kӸѡAn¨D²Äk+1ӸѮɡA¥i¥H§Q¥Î»²§U¨ç¼Æ¡A±N¤wª¾ªº¸Ñx1¡Bx2¡B¡K¡Bxk¥Ñ¦h¶µ¦¡¤¤¥ý¦æ¥h°£±¼¡C¦A§Q¥Î¤û¹yªk¸Ñ»²§U¨ç¼ÆGN-K¡A±o¨ì¡¥N¦¡¬°
xk+1,i= xk+1,i-1 ¡V
d(x) (10-6.5)
¨ä¤¤
°õ¦æ®É¡A¥Oxk+1,0 ¬°²¤¤j©ó xk ªº¼Æ¦r¡A§Yxk+1,0 = xk + e¡Q¨ä¤¤e¬°¤@ӫܤpªºÈ¡A¨Ò¦p10-4¡C¶®¥i¥²¦h¶µ¦¡§Q¥Î¥»¸` [C] ªº¤èµ{¦¡pºâ¡A©ópºâ¨D±oxk+1«á¡AÅýk¼W¥[1¡A¦A«½Æ¥H¤W¨BÆJ¡C§Q¥Î³oºØ¤èªk©Ò«Ø¥ßªº°Æµ{¦¡¦p¤U©Ò¥Ü¡C
'
========================== '
ROOTS OF JACOBI POLYNOMIAL '
========================== ¡¥ Diff1(I) = G(I)
¡¥ Diff2(I) = H(I) ¡¥ AlphaPlusBeta
= Alpha + Beta AlphaMinusBeta
= Beta - Alpha AlphaBeta
= Beta * Alpha Diff1(1)
= (AlphaMinusBeta / (AlphaPlusBeta + 2) + 1) / 2 Diff2(1)
= 0 ¡¥
Calculate G(I) & H(I) If
N >= 2 Then For I = 2 To N
IM1 = I - 1 Z
= AlphaPlusBeta + 2 * IM1 Diff1(I)
= (AlphaPlusBeta * AlphaMinusBeta / Z / (Z + 2) + 1) / 2
If I = 2 Then
Diff2(I) = (AlphaPlusBeta + AlphaBeta + IM1) / Z / Z / (Z + 1)
Else
Z = Z * Z
Y = IM1 * (AlphaPlusBeta + IM1)
Y = Y * (AlphaBeta + Y)
Diff2(I) = Y / Z / (Z - 1)
End If Next I End
If '
Newton¡¦s Method to find ROOT X
= 0 For
I = 1 To N Do
XD = 0
XN = 1
XE = 0
XM = 0
For J = 1 To N
XP = (Diff1(J) - X) * XN - Diff2(J) * XD
XQ = (Diff1(J) - X) * XM - Diff2(J) * XE - XN
XD = XN
XE = XM
XN = XP
XM = XQ
Next J
ZC = 1 Z
= XN / XM
If I > 1 Then
For J = 2 To I
ZC = ZC - Z / (X - Root(J - 1))
Next J
End If Z
= Z / ZC X
= X - Z Loop While (Abs(Z) >
0.000000001) Root(I) = X X = X + 0.0001 Next
I ¡¥
To include ROOT at x= 0 and x=1 If
(N1 = 1) Then For I = 1 To N J
= N + 1 - I
Root(J + 1) = Root(J) Next I Root(1) = 0 End
If If
(N2 = 1) Then Root(ND) = 1 ¡¥
Print ROOTs for the Polynomial Print Print
"** COLLOCATION POINTS:" Print For
I = 1 To ND Print Format(Root(I),
" 0.000000E+00 ") Next
I |
[F] ¶®¥i¥²¦h¶µ¦¡ªº¾É¨ç¼Æ
°²³]§Q¥Î [E] ¤¤©Ò¤¶²Ðªº¤û¹yªk¡A¥i¥H±o¨ì¶®¥i¥²¦h¶µ¦¡ªºN+1Ó®Ú¡Axj¡Aj=1,2,¡K.,N+1¡A«h¥i±N¶®¥i¥²¦h¶µ¦¡¼g¦¨
(10-6.6)
©Î§ï¼g¦¨´`§Çpºâ¦¡
p0(x)
= 1
pj(x)
= (x-xj) pj-1(x) ¡Q j = 1, 2, ¡K¡K, N+1 (10-6.7)
±N¤W¦¡·L¤À¡A¥i¥H±o¨ì
(10-6.8)
(10-6.9)
(10-6.10)
¥Ñ©ó¡A¦]¦¹¡A§Q¥Î¥H¤W¤èµ{¦¡¡A¥i¥H«Ü§Öªº¨D±o¦b¦U°t¸mÂI¦ì¸m¤Wªº¾É¨ç¼ÆÈ¡C¼g¦¨°Æµ{¦¡½d¨Ò¦p¤U¡C
¡¥
Prepare Derivatives of the Polynomial For
I = 1 To ND X = Root(I) Diff1(I) = 1 Diff2(I) = 0 Diff3(I) = 0 For J = 1 To ND
If J <> I Then
Y = X - Root(J)
Diff3(I) = Y * Diff3(I) + 3 * Diff2(I)
Diff2(I) = Y * Diff2(I) + 2 * Diff1(I) Diff1(I) = Y *
Diff1(I)
End If Next J Next
I |
[G] ¶®¥i¥²¦h¶µ¦¡»P©Ô®æÄõ©_¤º´¡ªk
°Ñ¦Ò¥»®Ñ²Ä¤T³¹¼ÆÈ¤º´¡ªkªº»¡©ú¡AY¤wª¾(xi¡Ayi)¡Ai=1,2,¡K..,N+1¡A«hyN(x)¥i¥H§Q¥Î©Ô®æÄõ©_¤º´¡ªk(Lagrangian Interpolation)¼g¦¨
(10-6.11)
§Q¥Î³oºØ¤èªk©Ò«Ø¥ßªº¤º´¡ªk°Æµ{¦¡¦p¤U©Ò¥Ü¡C
'
======================== '
LAGRANGIAN INTERPOLATION '
======================== POL
= 1 For
I = 1 To ND YVA = X1 - Root(I) XP(I) = 0 If YVA = 0 Then XP(I) = 1 POL = POL * YVA Next
I If
POL <> 0 Then For I = 1 To ND XP(I)
= POL / Diff1(I) / (X1 - Root(I)) Next I End
If |
[H] ¶®¥i¥²¦h¶µ¦¡»P·L¤À¾Þ§@¯x°}
®Ú¾Ú©Ô®æÄõ©_¤º´¡¤èµ{¦¡(10-6.11)¡A¨ú·L¤À¡A¥i¥H±o¨ìy(x)ªº¤@¦¸¤Î¤G¦¸¾É¨ç¼Æ¤À§O¬°
(10-6.12)
(10-6.13)
¨ä¤¤
¨ä¤¤¶®¥i¥²¦h¶µ¦¡ªº¾É¨ç¼Æ¥i¥H§Q¥Î¤èµ{¦¡(10-6.8)¡B(10-6.9)¤Î(10-6.10)¨D¤§¡C§Q¥Î³oºØ¤èªk©Ò«Ø¥ßªº°Æµ{¦¡¦p¤U©Ò¥Ü¡C
Sub
DefMatrix(ID, ND, N1, N2, Diff1, Diff2, Diff3, Root, Vect, A, B) '
============================= '
DERIVATIVE OPERATION MATRICES '
============================= For
I = 1 To ND ID = 1 Call OpMatrix(I, ID, ND,
N1, N2, Diff1, Diff2, Diff3, Root, Vect) For J = 1 To ND
A(I, J) = Vect(J) Next J ID = 2 Call OpMatrix(I, ID, ND, N1,
N2, Diff1, Diff2, Diff3, Root, Vect) For J = 1 To ND
B(I, J) = Vect(J) Next J Next
I End
Sub Sub
OpMatrix(I, ID, ND, N1, N2, Diff1, Diff2, Diff3, Root, Vect) '
================ '
OPERATION MATRIX '
================ '
--ENTRY POINT For J = 1 To ND
If J = Index Then
If ID = 1 Then
Vect(J) = Diff2(Index) / Diff1(Index) / 2
Else
Vect(J) = Diff3(Index) / Diff1(Index) / 3
End If
Else
Y = Root(Index) - Root(J)
Vect(J) = Diff1(Index) / Diff1(J) / Y
If ID = 2 Then Vect(J) = Vect(J) * (Diff2(Index) / Diff1(Index) - 2 /
Y)
End If Next J End Sub |
[I] ¶®¥i¥²¦h¶µ¦¡»P°ª´µ¼ÆÈ¿n¤À
¿n¤À¾Þ§@¥i¥H±Ä¥Î¥»®Ñ²Ä¤»³¹©Ò¤¶²Ð¤§°ª´µ¿n¤Àªk¡C
(10-6.14)
¨ä¤¤¡A¨D¥X¿n¤À°t«¨ç¼Æwi¡A§Y¥ipºâ¿n¤Àµ²ªG¡C°ª´µ¶®¥i¥²°t«¨ç¼Æ¬°
W(x)
= xb(1-x)a
(10-6.15)
(10-6.16)
Yx=¢¯¬°¿n¤À°t¸mÂI¡A«hx1 = 1¡A§_«hx1 = 0¡C
Yx=¢°¬°¿n¤À°t¸mÂI¡A«hx2 = 1¡A§_«hx2 = 0¡C
[J] ¹p¹D»Pù§B¯S¼ÆÈ¿n¤À
°£¤F°ª´µ¿n¤Àªk¥H¥~¡A¹p¹D»Pù§B¯S(Radau and Lobatto)¿n¤Àªk¤]¬O¸û±`³Q¨Ï¥Îªº¼ÆÈ¿n¤À¤èªk¡C¨ä°t«¨ç¼Æ¬°
(10-6.17)
¨ä¤¤²Ä¤@¤Î²Ä¤G¦¡ºÙ¬°¹p¹D¼ÆÈ¿n¤À°t«¡A²Ä¤T¦¡ºÙ¬°Ã¹§B¯S¼ÆÈ¿n¤À°t«¡C
®Ú¾Ú¥H¤W½Ñ¸`ªº¤¶²Ð¡A§ÚÌ¥iÀÀ©w¥X§Q¥Î¥¿¥æ°t¸mªk¸Ñ·L¤À¤èµ{¦¡ªº´X¶µ¨BÆJ¡G
¡]i¡^
¯È¤W§@·~¡G
l
¥ÑÃä¬É±ø¥óÁi¾É¥Xy1¤ÎyN¡Ï2ªºªí¥Ü¦¡(¦p¥»³¹²Ä¤¸`ªº»¡©ú)¡C
l
§Q¥Î·L¤À¾Þ§@¯x°}¤Î
¡A±N·L¤À¤èµ{¦¡Âà´«¦¨
¨Ã¼g¤U¤Î
ªºªí¥Ü¤èªk¡C
¡]ii¡^
µ{¦¡³W¹º¡G
l
¨M©w¨Ï¥ÎªºNÈ(³q±`¿ï¥Î4¡ã10¶¡§Y¥i±o¨ì¬Û·í¥¿½Tªº¸Ñ)¡C
l
¨M©w¨Ï¥Îªº¥¿¥æ¯Å¼ÆºØÃþ¡C
l
³]pµ{¦¡§ä¥X¥¿¥æ¦h¶µ¦¡PN(x)ªº®Úxj¡Aj¡×1¡A2¡A¡K¡K¡AN¡A§@¬°°t¸mÂI¡C
l
³]pµ{¦¡¨D¥X·L¤À¾Þ§@¯x°}¤Î
¡C
l
«Ø¥ß¤Î
¡A¨Ã±N·L¤À¤èµ{¦¡§ï¼g¦¨Áp¥ß¤èµ{¦¡¡C
l
§Q¥Î°ª´µ®ø¥hªk¸Ñ½u©ÊÁp¥ß¤èµ{¦¡¡A¨D±o°t¸mÂI¤Wªº¨ç¼ÆÈ
¡C
l
§Q¥Î¤º´¡ªk¥H¾A·íx¶¡¶Z¦C¦LyÈ¡C
«D½u©Ê±`·L¤À¤èµ{¦¡°ò¥»¤W¤À¦¨¤T¤jÃþ¡G(1)½u©Ê±`·L¤À¤èµ{¦¡¡AÃä¬É±ø¥ó«D½u©Ê¡Q(2)«D½u©Ê±`·L¤À¤èµ{¦¡¡AÃä¬É±ø¥ó¬°½u©Ê¡Q(3)«D½u©Ê±`·L¤À¤èµ{¦¡¡A«D½u©ÊÃä¬É±ø¥ó¡C¦ý¥é¥H¤W¦U¸`³B²z«á¡A³o¤TÃþ«D½u©Ê±`·L¤À¤èµ{¦¡§¡¥iÅܦ¨¤@²ÕÁp¥ßªº«D½u©Ê¥N¼Æ¤èµ{¦¡¡A§Q¥Î¥»®Ñ©Ò¤¶²Ðªº¤û¹y©ÔºÖ´Ëªk©Î³Î½uªk§Y¥i¥é¥H¤W¦U¸`¨D±o¡C¥H¤U§Q¥Î¹ê¨Ò»¡©ú¤§¡C
1.
Finlayson, B. A., ¡§The Method of
Weighted Residuals and Variational Principles¡¨ Academic Press, (1972).
2.
Villadsen, J., and M. L. Michelsen;
¡§Solution of Differential Equation Models by Polynomial Models¡¨, Prentice-Hall,
(1978).
3.
Finalyson, B. A., ¡§Nonlinear Analysis
in Chemical Engineering¡¨. (1980).
4.
Davis, M. E., ¡§Numerical Methods and
Modeling for Chemical Engineers¡¨, John Wiley, New York, (1984).
5.
Aris, R. ¡§The Mathematical Theory of
Diffusion and Reaction in Permeable Catalysts¡¨. Oxford, Clarendon Press (1975).
6.
Carberry, J. J., ¡§Chemical and
Catalytic Reaction Engineering¡¨ McGraw-Hill, New York, (1976).
7.
Weisz, P. B., and J. S. Hicks, ¡§The
Behavior of Porous Catalyst Particles in View of Internal Mass and Heat
Diffusion Effects¡¨, Chem. Eng. Sci., 17, 265 (1962).