¦^­º­¶     ¦^²Ä¤T³¡     ¤U¤@³¹

²Ä¤Q³¹  °t­«´Ý­Èªk

°t­«´Ý­Èªk(Method of Weighted Residuals, MWR)ªº°ò¥»Æ[©À¡A¬O§Q¥Î¤@²Õ¦h¶µ¦¡ªí¥Üªñ¦ü©ó°ÝÃDªº¥¿½T¸Ñ¡A±N¥¿½T¸Ñ»Pªñ¦ü¸Ñªº»~®t´Ý­È¡A­¼¥H¾A·íªº°t­«¨ç¼Æ«á¡A¨Ï¨äÁ`©M©Î¿n¤À­È³Ì¤p¤Æ¡A¥H¹F¨ì³Ì±µªñ¥¿½T¸Ñªº¥Ø¼Ð¡C¤uµ{¬É±Ä¥ÎMWR°t­«´Ý­Èªk¸Ñ¨M¤uµ{¤ÀªR°ÝÃD¡A¬ù¦Û1960¦~¥N¶}©l¡A¥Ø«e¤w¦³³\¦h±M®Ñ [ 1¡A2¡A3 ] ¸Ô²Ó°Q½×³oºØ¤èªk¡A¨äÀ³¥Î¼s¨£©ó¬yÅé¤O¾Ç¡B¼ö¶Ç»¼¡B½è¶q¶Ç»¼¡B¤ÏÀ³¤uµ{µ¥¦U»â°ì¡A¬O¤@ºØ¬Û·í¦³®Ä²vªº¼Æ¾Ç¤u¨ã¡C°t­«´Ý­Èªk¤¤¡A¤S¥H¼Æ¾Ç°t¸mªk³Ì©ö©ó¨Ï¥Î¡Aªñ¦~¨Ó¤w¦¨¬°¸Ñ·L¤À¤èµ{¦¡ªº¼Æ­È¤èªk¤¤³Ì¼sªx³Q¨Ï¥Îªº¤èªk¤§¤@¡C

²Ä¤@¸`  °t­«´Ý­Èªk°ò¥»­ì²z

¬°¤F»¡©ú°t­«´Ý­Èªkªº°ò¥»·Qªk»P³B²z¤èªk¡A§Ú­Ì­º¥ý¥H¤@­Ó³Ì²³æªºÃä¬É­È±`·L¤À¤èµ{¦¡¬°¨Ò¥[¥H»¡©ú¡C

                                                      (10-1.1)

°²³]¤Î¦b0¡Õx¡Õ1ªº°Ï¶¡¤º³£¬O³sÄò¨ç¼Æ¡A«h¥H¤W¤èµ{¦¡ªº¸Ñ¤]¥²µM¬O¤@­Ó³sÄò¨ç¼Æ¡C®Ú¾Ú¥»®Ñ²Ä¤T³¹ªº»¡©ú¡A¥ô¦ó³sÄò¨ç¼Æ³£¥i¥H§Q¥Î¤@­Ó¦h¶µ¦¡¨Ó¥Nªí¡Q¦]¦¹¡A¤èµ{¦¡(10-1.1)ªº¸Ñ¡A¥i¥H§Q¥Î¤@µL­­¯Å¼Æªº©Mªí¥Ü¤§¡C

¨ä¤¤ui(x)ºÙ¬°°ò¦¨ç¼Æ(Basis Function)¡C¥Ñ©óxªº½d³ò¬°0¡Õx¡Õ1¡A·íi­È¼W¤j®É¡Axi§Y§Ö³tÅܤp¡Q¦]¦¹¡A¬°¤F²¤Æ°_¨£¡A¦Ò¼{·íi > N«áxi§Y¥i©¿²¤¡A ¥i¥H°²³]¬°§Q¥Î¤@­Ó(N¡Ï1)¦¸¦h¶µ¦¡ªñ¦ü¤§¡C

                                                     (10-1.2)

¥Ñ©ó¬°¤èµ{¦¡(10-1.1)ªºªñ¦ü¸Ñ¡A¦]¦¹¡A¤]­nº¡¨¬·L¤À¤èµ{¦¡ªº¨â­ÓÃä¬É±ø¥ó¡ABC1¤ÎBC2¡F±N¥N¤JÃä¬É±ø¥óBC1¤¤¡A±o¨ì¡G

BC1                                                                       (10-1.3)

±N¥N¤JÃä¬É±ø¥óBC2¤¤¡A±o¨ì¡G

BC2      

©Î±N¦¹¤èµ{¦¡¾ã²z«á±o¨ì

                                                               (10-1.4)

±N¤èµ{¦¡(10-1.3)¤Î(10-1.4)¥N¦^¤èµ{¦¡(10-1.2)¡A«h£cªºªñ¦ü¸Ñªí¥Ü¦¡¥i¥H§ï¼g¦¨¬°

                                       (10-1.5)

¦¹¤èµ{¦¡¤¤§t¦³C2¡AC3¡A¡K¡K¡ACN¡Ï1Á`¦@N­Ó¥¼©w«Y¼Æ¡A¦]¦¹¡A»Ý­n¦A§Q¥ÎN­Óº¡¨¬·L¤À¤èµ{¦¡(10-1.1)ªº±ø¥ó¨Ó¨M©w³o¨Ç«Y¼Æ¡C

¬°¤F²¤Æ»¡©ú°_¨£¡A­º¥ý¦Ò¼{N¡×1ªº±¡ªp¡A¥ç§Y¡A«h¤èµ{¦¡(10-1.5)¥i²¤Æ¦¨

                                                               (10-1.6)

¥H¤W¨BÆJ¬°«Ø¥ß·L¤À¤èµ{¦¡ªñ¦ü¸Ñªí¥Ü¦¡ªº¤èªk¡C¨ä¦¸­n¦Ò¼{¦p¦ó¨M©w¥¼©w«Y¼ÆC2¡AC3¡A¡K¡K¡ACN¡Ï1¡C¬°¤F²¤Æ»¡©ú°_¨£¡A±N·L¤À¤èµ{¦¡¼g¦¨L{x¡Ay}¡×0ªº§Î¦¡¡Q­Yªñ¦ü¦h¶µ¦¡(10-1.2)§¹¥þº¡¨¬­ì·L¤À¤èµ{¦¡¡A«h¥N¤J·L¤À¤èµ{¦¡±N±o¨ìL{x¡A}¡×0¡C¦ý¥Ñ©ó¦p«e­±©Ò»¡©ú¬°ªñ¦ü¸Ñ¡A±N¥N¤J·L¤À¤èµ{¦¡L{x¡Ay} ¤¤¡Aµ²ªG¤£¤@©w¯à±o¨ì¹s¡C¦]¦¹¡A©w¸q¥N¤J·L¤À¤èµ{¦¡©Ò±o¨ìªº´Ý­È¬°R¡×L{x¡A}¡C

        ±N¤èµ{¦¡(10-1.6)¥N¤J­ì¤èµ{¦¡¡A±o¨ì´Ý­È¬°

                                                                                        (10-1.7)

        ­Y¬°¥¿½T¸Ñ¡A«h´Ý­ÈR¡×0¡C¦ý¥Ñ¤èµ{¦¡(10-1.7)¥i¥Hª¾¹D¡A¥Ñ©óx¦ì©ó0»P1¶¡(0¡Õx¡Õ1)¡A¦]¦¹¡A§Ú­Ì­Y¿ï©w¬Y¤@¯S©wC2­È¡A¥²¯à¨Ï´Ý­ÈR¦b0¡Õx¡Õ1¶¡ªº¬Y¤@ÂI®É¬°¹s¡A¦Ó¦b¨ä¥Lx¦ì¸mªº´Ý­ÈR«h¥i¯à¤j©ó©Î¤p©ó¹s¡C¥i¬O»Ýª`·N¥Ñ©ó¥u¬O¤@­Óªñ¦ü¸Ñ¡A¦pªG´Ý­ÈR¦b¨C¤@x¦ì¸m³£µ¥©ó¹s¡A·íµM¬O³Ì¦nªº¸Ñµª¡A§_«h¤]¥i¥H°h¦Ó¨D¨ä¦¸¡A­n¨D´Ý­ÈR¦b©Ò¦Ò¼{°Ï¶¡0¡Õx¡Õ1¤ºªº¬Y¤@ºØ¥­§¡­È¬°¹s¡A¥ç§Y¡AÅý´Ý­ÈRªº°t­«¿n¤À¬°¹s¡A¥ç¤£¥¢¬°¤@¨}¦nªºªñ¦ü¸Ñ¡C³oºØÆ[©À¥H¼Æ¾Ç¦¡ªí¥Ü¡A§Y¬°

                                                 (10-1.8)

¥ç§Y¡A¥u­nµ¹©w°t­«¨ç¼Æ¡A§Q¥Î¤èµ{¦¡(10-1.8)°õ¦æ¿n¤À«á¡A§Y¥i¨D¸Ñ¥¼©w«Y¼ÆCi¡CµM«á¡A¥N¦^ªºªí¥Ü¦¡(10-1.2)¡A§Y¥i¨D±o·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡C¥H¤W©Ò»¡©úªº´N¬O°t­«´Ý­Èªkªº°ò¥»·Qªk»P¨BÆJ¡A¥[¥H¾ã²z¦p¤U¡G

(1) §Q¥Î¤@­Ó¦h¶µ¦¡§@¬°·L¤À¤èµ{¦¡L{x¡Ay}¡×0ªºªñ¦ü¸Ñ¡F

(2) ¨Ï¦h¶µ¦¡º¡¨¬·L¤À¤èµ{¦¡ªºÃä¬É±ø¥ó¡A¨Ã²¤Æªí¥Ü¦¡¡Q

(3) ¥N¤J·L¤À¤èµ{¦¡L{x¡Ay}¡×0¡A¨D¥X´Ý­Èªºªí¥Ü¦¡R¡×L{x¡A}¡Q

(4) ©w¸q°t­«¨ç¼Æ¡F

(5) ¨Ï°t­«´Ý­Èªº¿n¤À¦¡¬°¹s¡A§Y¡Q¥i¥H«Ø¥ßN­Ó¥¼©w«Y¼ÆCiªºÁp¥ß¤èµ{¦¡¡F

(6) ¸ÑÁp¥ß¤èµ{¦¡¡A§ä¥Xªñ¦ü¦h¶µ¦¡ªº¥¼©w«Y¼ÆCi¡Q

(7) ¥N¦^­ìªñ¦ü¦h¶µ¦¡¡A«Ø¥ß·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡Q

(8) §Q¥Î¾A·í¤º´¡ªk¡A­pºâ·L¤À¤èµ{¦¡¦b¯S©w¦ì¸mªº¸Ñ¡C

°t­«´Ý­Èªk(Methods of Weighted Residuals)ªº°ò¥»·Qªk¦p«e­±ªº¤¶²Ð¡A¦ý°t­«¨ç¼Æ¦³¦hºØ¤£¦Pªº¿ï¾Ü¡C¨Ì©Ò¿ï¾Ü°t­«¨ç¼Æªº¤£¦P¡A¹ïÀ³ªº°t­«´Ý­Èªk§Y¦³¤£¦Pªº¦WºÙ¤Î¤£¦Pªº¯S©Ê¡A¥H¤U¤À§O²­n¤¶²Ð¤§¡C

[A]  °t¸mªk(Collocation Method)

°t¸mªkªº°t­«¨ç¼Æ©w¸q¬°

                                 (10-1.9)

¨ä¤¤ºÙ¬°°t¸mÂI(Collocation points)¡CºÙ¬°Dirac Delta¨ç¼Æ¡A°²³]´Ý­ÈR¡×L{x¡A}¨ç¼Æ¦b©Ò¦Ò¼{ªº±±¨îÅé¿nV¤§¥~¤£¦s¦b¡A«h°t­«´Ý­È¿n¤À¦¡¥i¥H¼g¦¨

³oºØ¤èªkªí¥Ü¦b°t¸mÂI¦ì¸m¤Wªº´Ý­È¤@©w¬°¹s¡C·íN­È¼W¤j®É¡A´Ý­ÈR(x)·|¦b¶V¦hªºÂI¤W¬°¹s¡A¨Ï±oªñ¦ü¸ÑÁͪñ©ó¹ê»Ú¸Ñ¡C

Äõ­Y´µ(Lanczos, C. 1938)¿ï¾Ü®ã¤ñ³·¤Ò¦h¶µ¦¡(Chebyshev Polynomial)§@¬°°ò¦¨ç¼Æui(x)¡A®ã¤ñ³·¤Ò¦h¶µ¦¡¬O¤@ºØ¥¿¥æ¦h¶µ¦¡¡CÄõ­Y´µ¨Ã§Q¥Î®ã¤ñ¦è¤Ò¦h¶µ¦¡ªº®Ú§@¬°°t¸mÂI¡A³oºØ¤èªk§YºÙ¬°¥¿¥æ°t¸mªk(Orthogonal Collocation)¡C

[B]   ¤Ú¿Õ¤Ò¡X¸¯°Çª÷ªk(Bubnov-Galerkin Method)

¦b°t­«´Ý­Èªk¤¤³Ì¦³¦Wªº¤èªk¡A¥i¯à´N¬O¤Ú¿Õ¤Ò--¸¯°Çª÷ªk¡C¦b³oºØ¤èªk¤¤¡A©w¸q°t­«¨ç¼Æ¬°°ò¦¨ç¼Æuj(x)¹ï¥¼©w«Y¼ÆCjªº¾É¨ç¼Æ¡A¥H¼Æ¾Ç¦¡ªí¥Ü¬°

                               (10-1.10)

¦b³oºØ¤èªk¤¤¡Auj(x)¬°¤@²Õ°ò¦¨ç¼Æ¤§¤@¡A¨Ï±o¦b©Ò¦Ò¼{±±¨îÅé¿n¤º¡A¥ô¦ó¨ç¼Æ³£¥i¥H§Q¥Î³o²Õ°ò¦¨ç¼Æªí¥Ü¤§¡A¡C¦]¦¹¡A·íNÁͪñ©óµL½a¤j®É¡Aªñ¦ü¸Ñ¦b©Ò¦Ò¼{ªºªÅ¶¡¤º§Y¯à¥Nªí¥¿½T¸Ñ¡C

[C]  °ª´µ¡X§õ®Ú¼w³Ì¤p¥­¤èªk(Gauss-Legendre Least Square Method)

°ª´µ¡X§õ®Ú¼w³Ì¤p¥­¤èªkªº°ò¥»Æ[©À¡A¬O§Q¥Î´Ý­Èªº¥­¤è¿n¤À¦¡¬°¹s¡A§ä¥XÅý´Ý­È³Ì¤p¤Æªº¥¼©w«Y¼Æ¡C¡C¥ç§Y¡A

¥Ñ¥H¤WÃö«Y¦¡¡A¥i¥H«Ø¥ßN²Õ¥N¼Æ¤èµ{¦¡¡C³oºØ¤èªk·¥¨ã¦³¼Æ¾Ç·N¸q¡A²z½×¤W¬O±j­¢Åý»~®t­È±o¥­¤è©M¹F³Ì¤p¤Æ¡C¥Ñ¤W¤@¤èµ{¦¡¡A¤ñ¸û°t­«¨ç¼Æ¤§©w¸q¡A¥iª¾³oºØ¤èªkªº°t­«¨ç¼Æ¬°

                                                   (10-1.11)

³Ì¤p¥­¤èªk¦b³\¦h¤uµ{À³¥Î¤W±`³Q¨Ï¥Î¡A¦ý¥Ñ©ó¨Ï¥Î´Ý­Èªº¥­¤è¿n¤À¦¡¡A¤]«Ü®e©ö²£¥Í«Ü§xÂZªº¥N¼Æ¤èµ{¦¡¡C

[D]  ºD¶qªk(Method of Meoments)

ºD¶qªk³Ì¥ý³QÀ³¥Î¦b«D½u©Êº¯³z(Non-linear Diffusion)¤Î¬yÅé¤O¾Ç¤¤ªº¼h¬yÃä¬É¼h(Laminar Boundary Layer)°ÝÃDªº¸ÑªR¤W¡A°ò¥»¤W­n¨D´Ý­Èªº³sÄò¶¥¦¸ºD¶q¬°¹s¡C¥ç§Y°t­«¨ç¼Æ¬°

                                                    (10-1.12)

²Ä¤@¶¥ªñ¦üºD¶qªkªºµ²ªG¡A»P¦Ò¼{¾ã­Ó°Ï¶¡µø¬°¤@­Ó¤l°Ï¶¡ªº°Ï¶¡ªk¬Û¦P¡A³oºØªñ¦üªk¦b¼h¬yÃä¬É¼h°ÝÃDªº¸ÑªR¤W¥çºÙ¬°¶¾¥dªù¤ÎÁ¡»¨´Ëªñ¦üªk(von Karman & Pohlhausen Similarity)¡C

[E]   °Æ°Ï¶¡ªk(Subdomain Method)

°Æ°Ï¶¡ªk¬O±N­ì¨Óªº°Ï¶¡(0¡A1)¤À³Î¦¨N­Ó°Æ°Ï¶¡¡A¨Ã©w¸q°t­«¨ç¼Æ¬°

                       (10-1.13)

¨Ò10-1              °t­«´Ý­Èªk

¸Õ§Q¥Î¦UºØ¤£¦Pªº°t­«´Ý­Èªk¸ÑÃä¬É­È±`·L¤À¤èµ{¦¡(BVP-ODE)

       

µù¡G¥¿½T¸Ñ¬°

[¸Ñ]

[A]  N¡×1¡F¡F´Ý­Èªí¥Ü¦¡¬°

 

®Ú¾ÚMWRªº°ò¥»­ì²z¡G¡A¥H¤U¥H¦UºØ¤£¦P°t­«¨ç¼Æ¡A«Ø¥ß¥¼©w«Y¼ÆC2ªº­È¡C

(i) °t¸mªk¡G°t­«¨ç¼Æ¬°W¡×£_(x¡Ðx1)

¥O°t¸mÂIx1¡×0.5¡Q±oR¡×2 C2¡Ð0.5¡×0¡A§YC2¡×0.25¡Aªñ¦ü¨ç¼Æ¬°

   

­Y¥Ox1¡×0.6¡Q«h±oC2¡×0.3¡Cªñ¦ü¨ç¼Æ¬°

   

ª`·N¡G°t¸mªk©Ò±oµ²ªG·|¦]°t¸mÂI¦ì¸mªº¿ï¾Ü¦Ó²§¡C

(ii) ¤Ú¿Õ¤Ò¡Ð¸¯°Çª÷ªk¡G°t­«¨ç¼Æ¬°

¬G¡F¡@¡C

(iii) ³Ì¤p¥­¤èªk¡G°t­«¨ç¼Æ¬°

¬G¡F ¡@¡C

(iv) ºD¶qªk¡G°t­«¨ç¼Æ¬°

±o¨ì¡F ¡@¡C

(v) °Æ°Ï¶¡ªk¡G°t­«¨ç¼Æ¬°W(x)¡×1¡F0¡Õx¡Õ1

±o¨ì¡F ¡@¡C

[B]    N¡×2¡F¦Ò¼{¤G¶¥ªñ¦ü¨ç¼Æ¡A§Y¨úN=2¡Q¥Ñ¤èµ{¦¡(10-1.5)±o¤G¶¥ªñ¦ü¸Ñ¬°

      

¥N¦^­ì·L¤À¤èµ{¦¡¡A±o¨ì´Ý­È¬°

(i) °t¸mªk¡G°t­«¨ç¼Æ¬°¡Fj¡×1¡A2

¥O°t¸mÂI¬°¤Î¡Q«h±o°t¸mÂI´Ý­È¬°

¸Ñ¤§¡A±o¡A¥B¡A¥N¦^­ìªñ¦ü¨ç¼Æ¤èµ{¦¡¡A±o¨ì·L¤À¤èµ{¦¡ªº¤G¶¥ªñ¦ü¸Ñ¬°

   

»P¥¿½T¸Ñ¬Û¦P¡C

(ii) ¤Ú¿Õ¤Ò¡Ð¸¯°Çª÷ªk¡G°t­«¨ç¼Æ¬°

°t­«¿n¤À¦¡¥i¥H¤À¦¨¨â²Õ

¸Ñ¥H¤W¤GÁp¥ß¤èµ{¦¡¡A±o¨ì¡A¡C¥ç§Yªñ¦ü¸Ñ¬°

   

¥ç»P¥¿½T¸Ñ§¹¥þ¬Û¦P¡C

ªí10-1.1 °t¸mªk»P¸¯°Çª÷ªk·Ç½T«×¤§¤ñ¸û

x

¥¿½T¸Ñ

N=1

N=2

°t¸mªk*

¸¯°Çª÷ªk

°t¸mªk

¸¯°Çª÷ªk

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.9168

0.8347

0.7545

0.6773

0.6042

0.5360

0.4738

0.4187

0.3715

0.908

0.822

0.742

0.668

0.600

0.538

0.482

0.432

0.388

0.908

0.822

0.742

0.668

0.600

0.538

0.482

0.432

0.388

0.9168

0.8347

0.7545

0.6773

0.6042

0.5360

0.4738

0.4187

0.3715

0.9168

0.8347

0.7545

0.6773

0.6042

0.5360

0.4738

0.4187

0.3715

¡¯ °t¸mªkN¡×1®É¡A°t¸mÂI¿ï¥Îx¡×0.6¡Q­Y°t¸mÂI¿ï¥Îx¡×0.5¡A«hµ²ªG²¤®t¡C

¥Ñ¥»¨Ò¥iµo²{¦UºØ°t­«´Ý­Èªk§¡¯à«Ü§Ö¦aÀò±o¦¹°ÝÃDªºªñ¦ü¸Ñ¡C¦ý¤@¯ë¦Ó¨¥¸û§C¶¥ªºªñ¦ü¸Ñ¡A¥H¸¯°Çª÷ªk¯àÀò±o¸û¨Îªºµ²ªG¡C°ª¶¥ªñ¦ü¸Ñ«h¦U¤èªk©Ò±oµ²ªG³£¬Û·í·Ç½T¡A¦ý¥Ñ©ó°t¸mªk¥u»Ý¸Ñ¤@²Õ¥N¼ÆÁp¥ß¤èµ{¦¡¡A§Y¥i¨D±o«Y¼Æ¡A¦Ó¨ä¥L¤èªk«h§¡¶·¥ý§@¿n¤À³B²z¡A¦]¦¹¡AN­È¸û¤j®É¡A°t¸mªk³Ì¨ã¨Ï¥Î¼ç¤O¡A¦Ó¥Bµ{¦¡³]­p¤]³Ì®e©ö¡C¦]¦¹¡A¥»³¹¨ä¾l¦U¸`±NµÛ­«©ó¦UºØ¼Æ¾Ç°t¸mªkªº¤¶²Ð¡C

²Ä¤G¸`  °t­«´Ý­ÈªkªºÀ³¥Î

        ¬°¤F»¡©ú°t­«´Ý­Èªkªº°ò¥»¨Ï¥Î¤èªk¡A¨ä¦¸¦A¥H¶ê¬Wª¬Ä²´C²É¤lªº®|¦V½è¶Çº¯³z¤Îµ¥·Ån¦¸«D¥i°f¤ÏÀ³¼Ò¦¡¬°¨Ò¡A»¡©ú°t­«´Ý­ÈªkªºÀ³¥Î¤èªk¡C

                                                                  (10-2.1)

        BC1         x¡×0®É¡A       ¡×0

        BC2         x¡×1®É¡A       y¡×1

¨ä¤¤y¡×C¡þCs¬°µL¦]¦¸¿@«×¡Ax¡×r¡þR¬°µL¦]¦¸¥b®|¡AºÙ¬°§Æ²Á¼Æ(Thiele modulus)¡CIJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°

                                                                                     (10-2.2)

[A] ³Ì§C¶¥°t­«´Ý­Èªky1(x)

        ·ín=1®É¡A¦Ò¼{º¡¨¬¨â­ÓÃä¬É±ø¥ó§Y¤èµ{¦¡(10-2.1)ªº³Ì§C¶¥ªñ¦ü¨ç¼Æ¬°y1(x)=1+a1(1-x2)¡A¥N¤J¤èµ{¦¡(10-2.1)±o¨ì´Ý­Èªí¥Ü¦¡¬°

                                               (10-2.3)

®Ú¾Ú°t­«´Ý­Èªkªº©w¸q

©Î                                                                     (10-2.4)

°t¸mªk¡G°t­«¨ç¼Æ¬°    ¡F¥Ox1=1/2¡A¥N¤J¤èµ{¦¡(10-2.4)±o¨ì¡A¬G±o¨ì¥¼©w«Y¼Æa1­È¤Î¤@¶¥ªñ¦ü¨ç¼Æy1(x)¬°

                     (10-2.5)

IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C

¸¯°Çª÷ªk¡G°t­«¨ç¼Æ¬°¡A©Î ¡F¥N¤J¤èµ{¦¡(10-2.4)±o¨ì¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1­È¤Î¤@¶¥ªñ¦ü¨ç¼Æy1(x)¬°

                     (10-2.6)

IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C

°Æ°Ï¶¡ªk¡G°t­«¨ç¼Æ¬° ¡F¡C¥N¤J¤èµ{¦¡(10-2.4)±o¨ì¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1­È¤Î¤@¶¥ªñ¦ü¨ç¼Æy1(x)¬°

                        (10-2.7)

IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C

ºD¶qªk¡G°t­«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.4)±o¨ì¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1­È¤Î¤@¶¥ªñ¦ü¨ç¼Æy1(x)¬°

                        (10-2.8)

IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C

³Ì¤p¥­¤èªk¡G°t­«¨ç¼Æ¬°´Ý­È¹ï¥¼©w«Y¼Æ¤§·L¤À¡A¡A©Î¡F±N°t­«¨ç¼Æ¥N¤J¤èµ{¦¡(10-2.4)±o¨ì¡A¿n¤À«á±o¨ì¥¼©w«Y¼Æa1­È¤Î¤@¶¥ªñ¦ü¨ç¼Æy1(x)¬°

                (10-2.9)

IJ´C²É¤lªº¦³®Ä«×«Y¼Æ¬°¡C

¤èªk¤ñ¸û: ·í®É¡A¤ñ¸û¦UºØ¤èªk©Ò±oµ²ªG¡A¦pªí10-2.1©Ò¥Ü¡C¥i¥Hµo²{¸¯°Çª÷ªkµ²ªG³Ì¨Î¡C


ªí10-2.1 ¤@¶¥°t­«´Ý­Èªk©Ò±oµ²ªG¤§¤ñ¸û

 


[B] °ª¶¥°t­«´Ý­ÈªkyN(x)

        ·ín=1®É¡A¦Ò¼{º¡¨¬¨â­ÓÃä¬É±ø¥ó¤Î¤èµ{¦¡(10-2.1)ªºN¶¥ªñ¦ü¨ç¼Æ¬°¡A¨ä¤¤¬°º¡¨¬·L¤À¤èµ{¦¡Ãä¬É±ø¥óªº¨ç¼Æ¡A¬°º¡¨¬·L¤À¤èµ{¦¡§¡¤ÃÃä¬É±ø¥ó(homogeneous boundary conditions)ªº¨ç¼Æ¡C´N¤èµ{¦¡(10-2.1)¦Ó¨¥¡A

                                   (10-2.10)

©Î±NN¶¥ªñ¦ü¨ç¼Æ¼g¦¨¤U¦¡¡A¨ä¤¤¥O

                                                       (10-2.11)

¤èµ{¦¡(10-2.1)¥i¥H§ï¼g¦¨

                   (10-2.12)

±N¤èµ{¦¡(10-2.11)¥N¤J¤èµ{¦¡(10-2.12)¡A¸g¾ã²z«á¡A±o¨ì

      (10-2.13)

®Ú¾Ú°t­«´Ý­Èªkªº©w¸q

     

§Y    ©Î¦A¼g¦¨uªº¨ç¼Æ¬°

¡Aj=1,2,¡K,N                                          (10-2.14)

±N¤èµ{¦¡(10-2.13)¥N¤J¤èµ{¦¡(10-2.14)¡A¿n¤Àµ²ªG¥i¥H¼g¦¨¥H¤Uªº¯x°}§Î¦¡¡A

                                                                 (10-2.15)

¨ä¤¤¯x°}A¡AB¡A¤ÎC¤À§O¦]°t­«¨ç¼ÆWj(u)ªº©w¸q¦Ó·|¦³§ïÅÜ¡C¸Ñ¤èµ{¦¡(10-2.15)±o¨ì¥¼©w«Y¼Æ°}¦C¬°

                                                                  (10-2.16)

±N¦¹µ²ªG¥N¤J¤èµ{¦¡(10-2.11)¡A§Y¥i±o¨ì·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡C¦P®É¡A¤]¥i¥H¨D±oIJ´Cªº¦³®Ä«×«Y¼Æ¬°

                                                      (10-2.17)

°t¸mªk¡G°t­«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.13)¤Î¤èµ{¦¡(10-2.14)¡A±o¨ì

©Î

»P¤èµ{¦¡(10-2.15)¤ñ¸û¡A±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°

                                                              (10-2.18)

­Y¦Ò¼{¨Ï¥Îµ¥¶¡¶Z°t¸mÂI¡A¥Ñ©óu0=0¡AuN+1=1¡A«h¡A¥N¦^¤èµ{¦¡(10-2.17)¡A±o¨ì

                                         (10-2.19)

¸¯°Çª÷ªk¡G°t­«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.13)¤Î¤èµ{¦¡(10-2.14)¡A±o¨ì¡A¿n¤À®i¶}«á¡A±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°

      

              (10-2.20)

°Æ°Ï¶¡ªk¡G°t­«¨ç¼Æ¬°¡F¨ä¥L°Ï¶¡¡C¥N¤J¤èµ{¦¡(10-2.14)¡A±o¨ì¡C±N¤èµ{¦¡(10-2.13)¥N¤J¡A¿n¤À«á±o¨ì±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°

(10-2.21)

­Y¦Ò¼{¨Ï¥Îµ¥¶¡¶Z°Ï¶¡¡A¥Ñ©óu0=0¡AuN+1=1¡A«h¡C

ºD¶qªk¡G°t­«¨ç¼Æ¬°¡F¥N¤J¤èµ{¦¡(10-2.13)¤Î¤èµ{¦¡(10-2.14)¡A±o¨ì

¿n¤À«á±o¨ì¯x°}A¡AB¡A¤ÎC¤À§O¬°

        (10-2.22)

³Ì¤p¥­¤èªk¡G°t­«¨ç¼Æ¬°´Ý­È¹ï¥¼©w«Y¼Æ¤§·L¤À¡A¡A©Î¡F±N¦¹°t­«¨ç¼Æ¥N¤J¤èµ{¦¡(10-2.14)¡A¨Ã±N¤èµ{¦¡(10-2.13)¥N¤J¡A¿n¤À«á¥i¥H±o¨ì¯x°}A¡AB¡A¤ÎC¡C¥Ñ©ó¿n¤À¤¾ªø¡A¤£¤©¦C¥X¡C

­pºâ¤èªk»P¨Ï¥Îµ¦²¤

°t­«´Ý­Èªkªº­pºâ¤èªk¡A¥i¥HÂk¯Ç¦p¤U:

(1) §Q¥Î¤@­Ó¦h¶µ¦¡§@¬°·L¤À¤èµ{¦¡L{y,u}¡×0ªºªñ¦ü¸Ñ¡F

(2) ¥N¤J·L¤À¤èµ{¦¡L{y,u}¡×0¡A¨D¥X´Ý­Èªºªí¥Ü¦¡R¡×L{yN,u }-L{y,u}¡Q

(3) ¿ï¾Ü¨Ï¥Îªº°t­«´Ý­Èªk¡A©w¸q°t­«¨ç¼Æ¡F

(4) ¨Ï´Ý­Èªº°t­«¿n¤À­È¬°¹s

(5) «Ø¥ßN­Ó¥¼©w«Y¼Æ°}¦CaªºÁp¥ß¤èµ{¦¡¡F

(6) §Q¥Î¼Æ­È¤èªk¸ÑÁp¥ß¤èµ{¦¡¡A§ä¥Xªñ¦ü¦h¶µ¦¡ªº¥¼©w«Y¼Æ°}¦Ca¡Q

(7) ¥N¦^­ìªñ¦ü¦h¶µ¦¡¡A«Ø¥ß·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡Q

(8) §Q¥Î¾A·í¤º´¡ªk¡A­pºâ·L¤À¤èµ{¦¡¦b¯S©w¦ì¸mªº¸Ñ¡C

¥H¤W©Ò­z¤§­pºâÅÞ¿è¦p¹Ï10-2.12©Ò¥Ü¡F§Q¥ÎExcel©Î°ª´µ®ø¥hªk¡A³£¥i¥H«Ü»´©ö¦a«Ø¥ß©Ò»Ýªºµ{¦¡¡C§Q¥ÎExcel©Ò«Ø¥ßµ{¦¡¦p¹Ï10-2.2©Ò¥Ü¡Cµ{¦¡½s¼g²Ó¸`¥i°Ñ¦Ò¥»®Ñ©Òªþ¥úºÐ¡C

 

¹Ï10-2.1 °t­«´Ý­ÈªkªºÅÞ¿è¹Ï

¹Ï10-2.2         (a)   §Q¥ÎExcel½s¼g°t­«´Ý­Èªkªº½d¨Ò¡A°t¸mªk¡C±N·L¤À¤èµ{¦¡ªº¨D¸Ñ¡AÅܦ¨Â²³æªº¯x°}¹Bºâ¡C§Q¥ÎExcel§Y¥i»´©ö¦a§¹¦¨¥ô°È¡AN=3©Ò±oµ²ªG»P¥¿½T¸Ñ¬Û·í¤@­P¡C

 

¹Ï10-2.2        (b) §Q¥ÎExcel½s¼g°t­«´Ý­Èªkªº½d¨Ò¡A°t¸mªk¡C

                        N=5©Ò±oµ²ªG¡C

²Ä¤T¸`  ¼Æ¾Ç°t¸mªk

¤W¤@¸`¤¤¡A§Ú­Ì§Q¥Î²³æªº½u©Ê°ÝÃD¬°¨Ò¡A»¡©ú¤F¦UºØMWR°t­«´Ý­Èªk¤Î¨ä¯S©Ê¡A¥»¸`¤¤«h±N°w¹ï°t¸mªk§@¸û¸ÔºÉªº°Q½×¡C¨Ï¥Î°t¸mªkªº®É­Ô¡Aªñ¦ü¨ç¼Æ¤Î°t¸mÂIªº¿ï¾Ü¤èªk¤j­P¥i¤À¦¨¤TÃþ¡G

(i) ¤º³¡°t¸mªk(Interior Collocation)

©Ò¿ï¥Îªºªñ¦ü¨ç¼Æº¡¨¬Ãä¬É±ø¥ó¡A°t¸mÂI¿ï¾Ü¦ì©ó·L¤À¤èµ{¦¡©Ò¦Ò¼{ªº°Ï¶¡¤º¡A¥H¨M©w¥¼©w«Y¼Æ¡C

(ii) Ãä¬É°t¸mªk(Boundary Collocation)

©Ò¿ï¥Îªºªñ¦ü¨ç¼Æº¡¨¬­ì·L¤À¤èµ{¦¡¡A¦Ó°t¸mÂI«h¦bÃä¬É¤W¿ï¨ú¡A¥H¨M©w¥¼©w«Y¼Æ¡C

(iii) ²V©M°t¸mªk(Mixed Collocation)

©Ò¿ï¥Îªºªñ¦ü¨ç¼Æ¬°¥ô·N¨ç¼Æ¡A¨ä¥¼©w«Y¼Æ¥Ñ©Ò¦Ò¼{°Ï¶¡¤º¤ÎÃä¬É¤W¿ï©wªº°t¸mÂI¨Ó¨M©w¡C

°t¸mªk±`¨£©óÃä¬É­È±`·L¤À¤èµ{¦¡¡B¯S¼x­È°ÝÃD(Eigenvalue Problem)¤Î°¾·L¤Àªº¨D¸Ñ¡C¥H¤U¦A§Q¥Î´X­Ó¨ÒÃD¥[¥H»¡©ú¡C

 

¨Ò10-2              ¤@¦¸¤¸¼ö¶Ç¾É(K¡Ú±`¼Æ)

¤@¥­ªO«p«×¬°L¡A¨â°¼·Å«×¤À§O¬°T0¤ÎT1¡C¨ä¯à¶q¥­¿Å¤èµ{¦¡¬°

¡Q0¡Õx¡ÕL                                                   (10-3.1)

BC1.         T(0)¡×T0

BC2.         T(L)¡×T1

¦¹¥­ªOªº¼ö¶Ç¾É²v»P·Å«×Ãö«Y¬°k(T)¡×k0¡Ï£\(T¡ÐT0)¡A¸Õ¨D¨ä·Å«×¤À¥¬¡C

[¸Ñ]       ¥OµL¦]¦¸·Å«×¤ÎµL¦]¦¸ªø«×¤À§O¬°

«h­ì·L¤À¤èµ{¦¡¥i¥H§ï¼g¦¨

¡Q0¡Õ£i¡Õ1                                    (10-3.2)

£c(0)¡×1

£c(1)¡×1

¨ä¤¤a¡×£\(T¡ÐT0)¡þk0¡Q¬°¤F²¤Æ»¡©ú°_¨£¡A¥Oa¡×1¡A«hº¡¨¬Ãä¬É±ø¥óªº°ò¦¨ç¼Æ¡A¥i¥H¼g¦¨

                                                           (10-3.3)

­Y¨úN¡×2¡A¨ä´Ý­È¬°

           (10-3.4)

°t¸mÂI¨ú¬°¤Î¡A¥N¤J´Ý­Èªí¥Ü¦¡¡A¨ÃÅý´Ý­È¦b°t¸mÂI¤W¬°0¡A«h±o

         C1¡×¡Ð0.5992

         C2¡×0.1916

¬G±o£cªº¤G¶¥ªñ¦ü¸Ñ¬°

©Î·Å«×¤À¥¬ªñ¦ü¸Ñ¬°

        

 

¨Ò10-3              «D½u©Ê·L¤À¤èµ{¦¡

¸Õ§Q¥Î¼Æ¾Ç°t¸mªk¸Ñ«D½u©Ê·L¤À¤èµ{¦¡¡C

¡Q0¡Õ£c¡Õ1                                                               (10-3.5)

        BC1         £c(0)¡×0

        BC2         £c(1)¡×0

[¸Ñ]   º¡¨¬Ãä¬É±ø¥óªº°ò¦¨ç¼Æ¥i¬°

                                                                    (10-3.6)

¦Ò¼{³Ì²³æªº±¡ªp¡AN¡×1¡A§Y¡C«h´Ý­È¬°

                                (10-3.7)

¨ú°t¸mÂI¬°x¡×0.5¡Q¥OR¦b°t¸mÂI¤W¬°0¡A±o¨ì

           

§Q¥Î¤û¹yªk¨D±o¤W¦¡ªº¸Ñ¬°C1¡×0.44712¡C¬G£c1¬°

           

»P¥¿½T¸Ñ¤§¤ñ¸û¦p¤Uªí¡Aµ²ªGÅã¥Ü¥Î³Ì²³æªºªñ¦ü¸Ñ¡A®ÄªGÁÙ¤£¿ù©O¡I

x

0.1

0.2

0.3

0.4

0.5

¥¿½T¸Ñ

-0.0414

-0.0733

-0.0958

-0.1092

-0.1137

£c1

-0.0402

-0.0715

-0.0939

-0.1073

-0.1178

»~®t%

2.8

2.4

1.99

1.73

1.69

²Ä¥|¸`  ¥¿¥æ°t¸mªk

°t¸mªk¨Ï¥Î¤è«K¡A¦ý¨ä·Ç½T«×«o¨M©w©ó°ò¦¨ç¼Æªº¿ï¾Ü¡BN­Èªº¤j¤p¤Î°t¸mÂIªº¿ï¾Ü¡C1938¦~Äõ­Y´µ(Lanczos)´£Ä³§Q¥Î¥¿¥æ¯Å¼Æ(Orthogonal Polynomials)§@¬°°ò¦¨ç¼Æ¡A¨Ã¥H¥¿¥æ¯Å¼Æªº®Ú§@¬°°t¸mÂI¡Q«á¨Ó¦A¸g¹LÃQ¼w´Ë¤Î¥v³£µØ(Villadsen and Stewart)ªº§ï¶i¡A¥Ø«e¤w¦¨¬°³Q¨Ï¥Î±o³Ì¼sªxªº°t¸mªk¡A³qºÙ¬°¡u¥¿¥æ°t¸mªk¡v(Orthogonal Collocation Method)¡C

¥¿¥æ°t¸mªk°ò¥»¤W¬O¥H¥¿¥æ¯Å¼Æ§@¬°°ò¦¨ç¼Æ¡Q¦pªG°ò¦¨ç¼Æªº³Ì°ª¦¸¼Æ¬°N¡A«h§Q¥ÎN¡Ï1¦¸ªº¥¿¥æ¯Å¼Æªº®Ú§@¬°°t¸mÂI¡C¥Ñ©ó¥¿¥æ¯Å¼Æ¨ã¦³³\¦h©ö©ó³B²zªº¼Æ¾Ç¯S©Ê¡A¦]¦¹¡A¥¿¥æ°t¸mªk°ò¥»­ì²zÁö»P«e­z°t¸mªk§¹¥þ¤@­P¡A¦ý¨Ï¥Î¤W«o¥iµ½¥Î¥¿¥æ¯Å¼Æªº¯S©Ê¡A¨Ï³B²z¤èªk§ó¬°Â²¤Æ¡A§ó¾A©ó§Q¥Î­pºâ¾÷¨Ó¨D¸Ñ¡C

°²³]¤@·L¤À¤èµ{¦¡ªºªñ¦ü¸Ñ¡A¥i¥H§Q¥Î¤@²Õ¥¿¥æ¯Å¼ÆP(x)ªº½u©Ê©M¨Óªí¥Ü¡A

                                                                     (10-4.1)

¦b¥H¤Wªº¤èµ{¦¡¤¤Á`¦@¦³N¡Ï2­Ó¥¼©w«Y¼Æ¡A¦ýªñ¦ü¸ÑyNªº¤Uµù¼Ð¥u¼g¦¨N¡A¬O¥Ñ©óÃä¬É­È±`·L¤À¤èµ{¦¡(BVP ODE)ªº¨â­ÓÃä¬É±ø¥ó¤w¸g¥i¥H¨M©w¨â­Ó­È¡A¥u»Ý­n¦A§Q¥ÎN­Ó¤º³¡°t¸mÂI§Y¥i¥H¨M©w©Ò¦³­È¡A¬G¼g¦¨yN¡F¨ä¤¤¡AN¥Nªí©Ò»Ýªº¤º³¡°t¸mÂI¼Æ¡C

¥¿¥æ¯Å¼ÆP(x)¥i¥H¼g¦¨¯Å¼Æªº¤@¯ëªí¥Ü¦¡

                                                                            (10-4.2)

¨ä¥¿¥æ©Ê½è¬°

¡Qk¡×0¡A1¡A2¡A¡K¡K¡Am¡Ð1              (10-4.3)

¨ä¤¤(a¡Ab)¬°Ãä¬É­È±`·L¤À¤èµ{¦¡ªº©w¸q½d³ò¡A³q±`³£¥ý§Q¥Î®y¼ÐÅÜ´«Âಾ¦¨(0¡A1)¡A¥H«K³B²z¡C

±N¤èµ{¦¡(10-4.2)¥N¤J¤èµ{¦¡(10-4.1)¤¤¡A¥i±N°ò¦¨ç¼ÆyN§ï¼g¦¨¥H¤Uªº¤è¦¡¡A¥H§Q­pºâ³B²z¡G

                                                                                (10-4.4)

°²³]¥i¥H§Q¥Î¾A·í¤èªk±o¨ì°t¸mÂI¡A«h¦b°t¸mÂIxj¦ì¸m¤Wªº¨ç¼Æ­ÈyN¬°

¡Qj¡×1¡A2¡A¡K¡K¡AN¡Ï2                              (10-4.5)

                x1¡×0¡A   xN¡Ï2¡×1

¦Ó¦b°t¸mÂIxj¦ì¸m¤W¡AyNªº¤@¦¸¤Î¤G¦¸¾É¨ç¼Æ¡A¥ç¥i¤À§O¥Ñ¤èµ{¦¡(10-4.4)¹ïx§@·L¤À¡A±o¨ì

                                                           (10-4.6)

                                                (10-4.7)

¥O¯x°}¡A¤Î¤À§O¬°

                                                                    (10-4.8)

¥O°}¦C¡A¡A«h¤èµ{¦¡(10-4.5)¡A(10-4.6)¤Î(10-4.7)¤À§O§ï¼g¦¨¯x°}²Å¸¹«á¡A±o¨ì

                                                                                           (10-4.9)

                                                                                      (10-4.10)

                                                                                    (10-4.11)

®Ú¾Ú¤èµ{¦¡(10-4.8)¥iª¾¡A­Y¤wª¾°t¸mÂI¦ì¸m¡A«h¯x°}¡A¤Î³£¥i¥H«Ü§Öªº­pºâ¥X¨Ó¡C¦Ó¥Ñ¤èµ{¦¡(10-4.9)¡A¥i¥H±N¥¼©w¸qªº«Y¼Æ°}¦Cªí¥Ü¦¨°t¸mÂI¤Wªº¨ç¼Æ­ÈªºÃö«Y

                                                                                      (10-4.12)

±N¤W¦¡¥N¦^¤èµ{¦¡(10-4.10)¤Î¤èµ{¦¡(10-4.11)¤¤¡A¥i¥H¤À§O±o¨ì

                                                            (10-4.13)

                                                         (10-4.14)

®Ú¾Ú¤èµ{¦¡(10-4.8)¥iª¾¡A­Y¿ï©w¤@²Õ°t¸mÂI¡A«h¡B¤Î§¡¥iª½±µ¨D±o¡A¦Ó¤W¤G¤èµ{¦¡¤¤¡B¤]³£¥i¥H§Q¥Î¯x°}¾Þ§@«Ü§Öªº¨D±o¡C¦]¦¹¡A¥i±N·L¤À¤èµ{¦¡¤¤ªº¤@¦¸¤Î¤G¦¸¾É¨ç¼Æ¶µ¡A³£ªí¥Ü¦¨°t¸mÂI¦ì¸mªº¨ç¼Æ­Èªº½u©Ê¨ç¼Æ¡A¦Ó±N­ì·L¤À¤èµ{¦¡Âà¤Æ¦¨¤@²ÕÁp¥ß¥N¼Æ¤èµ{¦¡¡C¯x°}A¤ÎB§YºÙ¬°·L¤À¾Þ§@¯x°}¡C§Q¥Î·L¤À¾Þ§@¯x°}¡A¥i¥H±N·L¤À¤èµ{¦¡§ï¼g¦¨¨ç¼Æ­Èªº½u©Ê¨ç¼Æ¡A¥ç§YÅܦ¨¤@²Õ½u©ÊÁp¥ß¤èµ{¦¡¡C§Q¥Î°ª´µ®ø¥hªk©Î¾A·í¼Æ­È¤èªk¡A§Y¥i¨D±o¦b°t¸mÂI³Bªº¨ç¼Æ­È¡C

¥H¤W©Ò»¡©úªº¥¿¥æ°t¸mªk°ò¥»ÅÞ¿è¡A¥i¥HÂk¯Ç¦p¤U¡G

(1)                                  §Q¥Î¥¿¥æ¦h¶µ¦¡ªº¸Ñ¡A±o¨ì¤@²Õ°t¸mÂI¡F

(2)                                  §Q¥Î¤èµ{¦¡(10-4.8)¤Î°t¸mÂI¡A«Ø¥ß¯x°}¡A¤Î¡F

(3)                                  «Ø¥ß¤@¦¸·L¤À¾Þ§@¯x°}¡A¨ä¤¤¡F

(4)                                  «Ø¥ß¤G¦¸·L¤À¾Þ§@¯x°}¡A¨ä¤¤¡F

(5)                                  §Q¥ÎÃä¬É±ø¥ó«Ø¥ßy1¤ÎyN+2ªºªí¥Ü¦¡(¦b¥»³¹²Ä¤­¸`¤¤¸Ô²Ó»¡©ú)¡F

(6)                                  ±N·L¤À¾Þ§@¯x°}¥N¤J­ì·L¤À¤èµ{¦¡¡A«Ø¥ß¨ç¼Æ­ÈªºÁp¥ß¤èµ{¦¡¡F

(7)                                  §Q¥Î°ª´µ®ø¥hªk©Î¨ä¥L¾A·í¼Æ­È¤èªk¡A¨D¸Ñ¨ç¼Æ­ÈªºÁp¥ß¤èµ{¦¡¡F

(8)                                  §Q¥Î¾A·í¤º´¡ªk¡A«Ø¥ß¯S©wÂI¤§¨ç¼Æ­Èy¡C

 

¨Ò10-4              §Q¥Î°t¸mªk¸ÑÃä¬É­È±`·L¤À¤èµ{¦¡

        BC1         y(0)¡×0

        BC2         y(1)¡×1

[¸Ñ]        ¬°¤F»¡©ú°_¨£¡A§Ú­Ì¥u¦Ò¼{³Ì²³æªº±¡ªpN¡×1¡A«hN¡Ï2­Ó°t¸mÂI¤À§O¬°¡A¤Î¡C®Ú¾Ú¤èµ{¦¡(10-4.8)±o¡A¤Î¤À§O¬°

        

        

        

¯x°}ªº¤Ï¯x°}¥i§Q¥Î°ª´µ¬ù¥¹ªk¨D±o¬°

        

¦]¦¹¡A·L¤À¾Þ§@¯x°}¥i¤À§O®Ú¾Ú¨ä©w¸q¨D±o¡C

        

        

¥N¦^­ì·L¤À¤èµ{¦¡±o¨ì

         ¡@¡Qj¡×1¡A2¡A¡K¡K¡AN¡Ï2

¥Ñ©óy1¡×0¡AyN¡Ï2¡×y3¡×1¡A¥u³Ñ¤Uy2¥¼ª¾¡A¦]¦¹¡A¥u¦Ò¼{N¡×1¥Bj¡×2ªº±¡ªp¡A¥Ñ¤W¦¡±o

        

±Ny1¤Îy3¥N¤J¡A±o¡A¥Ñ»Py2¡Ö0¡A¦]¦¹¡A¥i¥H±o¨ìy2¡×0.57916¡C

§Q¥Î³oºØ³B²z¤è¦¡¡A§Ú­Ì¥iÀò±o¦U°t¸mÂI¦ì¸mªºy­È¡C­Y»Ý¨ä¥L¦ì¸mªºy­È¡A«h¥i§Q¥Î¥»®Ñ²Ä¤T³¹©Ò¤¶²Ðªº´¡­Èªk¨D¤§¡C»Ý­n¨Dyªº¿n¤À­È¡A«h¥i§Q¥Î¥»®Ñ²Ä¤»³¹©Ò¤¶²Ðªº°ª´µ¿n¤Àªk(Gauss Quadrature)¨D¤§¡C

²Ä¤­¸`  ¥¿¥æ°t¸mªkÃä¬É±ø¥óªº³B²z

·L¤À¤èµ{¦¡ªºÃä¬É±ø¥ó³q±`¥i¤À¬°¤T¤jÃþ¡A¥»¸`±N¥H¹ê¨Ò¨Ó»¡©ú¨Ï¥Î¥¿¥æ°t¸mªk®É¡AÃä¬É±ø¥óªº³B²z¤èªk¡C

¦Ò¼{¤@±`·L¤À¤èµ{¦¡¬°¨Ò

                                                                     (10-5.1)

¨ä¥¿½T¸Ñ¬°

                                                            (10-5.2)

§Q¥Î¤W¤@¸`©Ò¤¶²Ðªº³B²z¤èªk¡A¤èµ{¦¡(10-5.1)¥i¥H³Q§ï¼g¦¨

¡Qj¡×1¡A2¡A¡K¡K¡AN+1     (10-5.3)

©Î±Ny1¤ÎyN+1²¾¨ì¤èµ{¦¡¥k°¼¡A§ï¼g¦¨

                                                                                                       (10-5.4)

¨ä¤¤£_jiºÙ¬°Kronecker Delta¡A©w¸q¬°

                                                                         (10-5.5)

¤èµ{¦¡(10-5.4)¤¤¡Ay1¤ÎyN¡Ï2³q±`§Q¥ÎÃä¬É±ø¥ó¨M©w¤§¡A¥H¤U¤À§O§Q¥Î¦UºØ¤£¦PªºÃä¬É±ø¥ó¥[¥H»¡©ú¡C

[A]  Ãä¬É±ø¥ó(I ¢w I)

¨â°¼Ãä¬É±ø¥ó§¡¬°²Ä¤@Ãþ(Dirichlet)Ãä¬É±ø¥ó¡G

        BC1         y(0)¡×0¡Q       x¡×0

        BC2         y(1)¡×1¡Q       x¡×1                                                        (10-5.6)

¤W¦¡¥i§ï¼g¦¨y1¡×0¡AyN¡Ï2¡×1¡A¥N¤J¤èµ{¦¡(10-5.4)±o¨ì

©Î§Q¥Î¯x°}²Å¸¹Â²¼g¦¨

©Î¶i¤@¨B²¤Æ¡A¨Ã¼g¦¨¥H¤Uªº¯x°}¤èµ{¦¡

                                                                                         (10-5.7)

¨ä¤¤

                  

¤èµ{¦¡(10-5.7)¥Nªí¤@²Õ½u©ÊÁp¥ß¤èµ{¦¡¡A¥i§Q¥Î°ª´µ®ø¥hªk¸Ñ¤§¡C

[B]   Ãä¬É±ø¥ó(I ¢w II)

­ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤@ÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤GÃþÃä¬É±ø¥ó¡G

BC1          y(0)¡×0¡Q       x¡×0

BC2          ¡Q x¡×1                                                        (10-5.8)

­Y¥Hyiªí¥Ü¡A«h±o¨ì

¥Ñ¤W¦¡¨D±oyN¡Ï2¬°

¥N¦^¤èµ{¦¡(10-5.4)¡A±o¨ì

j¡×2¡A3¡A¡K¡K¡AN¡Ï1

©Î¼g¦¨

                                                                                         (10-5.9)

¨ä¤¤

[C]  Ãä¬É±ø¥ó(I ¢w III)

­ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤@ÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤TÃþÃä¬É±ø¥ó¡G

BC1         y(0)¡×0¡Q       x¡×0

BC2         ¡Q  x¡×1                                                                (10-5.10)

BC2¥i§Q¥Î¤@¦¸¾É¨ç¼Æ¾Þ§@¯x°}ªí¥Ü¬°

¾ã²z¤§¡A¨Ã§Q¥ÎBC1(y1¡×0)¡C¥i¥H±o¨ì

¥N¤J¤èµ{¦¡(10-5.4)±o¨ì

©Î¥H¯x°}²Å¸¹ªí¥Ü¬°

                                                                                         (10-5.11)

¨ä¤¤

[D]  Ãä¬É±ø¥ó(II ¢w I)

­ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤GÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤@ÃþÃä¬É±ø¥ó¡G

BC1         ¡Q        x¡×0

BC2         y¡×1¡Q            x¡×1                                                                (10-5.12)

¥é¥H¤W³B²z¡A±o¨ì

©Î

                                                                                         (10-5.13)

  

[E]   Ãä¬É±ø¥ó(II ¢w II)

¨â°¼Ãä¬É±ø¥ó§¡¬°²Ä¤GÃþÃä¬É±ø¥ó¡G

BC1         ¡Q        x¡×0

BC2         ¡Q        x¡×1                                                                (10-5.14)

¥é¥H¤W³B²z¡A±oy1¤ÎyN¡Ï2¤À§O¬°

©Î±N¤W¦¡¤¤¬A¸¹¤ºªºªí¥Ü¦¡¥Hªí¥Ü¡A¨Ã¼g¦¨

¥N¤J¤èµ{¦¡(10-5.4)±o¨ì

                                                                                                 (10-5.15)

 [F] Ãä¬É±ø¥ó(II ¢w III)

­ìÂI°¼Ãä¬É±ø¥ó¬°²Ä¤GÃþÃä¬É±ø¥ó¡A¦bx=1¦ì¸m¤§Ãä¬É±ø¥ó¬°²Ä¤TÃþÃä¬É±ø¥ó¡G

BC1         ¡Q        x¡×0

BC2         ¡Q  x¡×1                                                                (10-5.16)

BC1¤ÎBC2¤À§O¥i¥Î·L¤À¾Þ§@¯x°}¼g¦¨¡G

©Î¾ã²z¦¨

¸Ñ¥H¤WÁp¥ß¤èµ{¦¡¡A±oy1¤ÎyN¡Ï2¤À§O¬°

±N¤W¦¡¥N¤J¤èµ{¦¡(10-5.4)±o¨ì

                                                                                         (10-5.17)

¨ä¤¤

 [G]        Ãä¬É±ø¥ó(III ¢w III)

¨â°¼Ãä¬É±ø¥ó§¡¬°²Ä¤TÃþÃä¬É±ø¥ó¡G

BC1         ¡Q          x¡×0

BC2         ¡Q      x¡×1                                                (10-5.18)

§Q¥Î·L¤À¾Þ§@¯x°}¡A§Y¡A¥i±NÃä¬É±ø¥ó§ï¼g¦¨

¾ã²z¦¨y1¤ÎyN¡Ï2ªºÁp¥ß½u©Ê¤èµ{¦¡¬°

¥Ñ¥H¤W¤G¤èµ{¦¡¡A¥iÁp¥ß¸Ñ±oy1¤ÎyN¡Ï2¤À§O¬°

©Î¥H²Å¸¹¥Nªí¡A²¼g¦¨

±N¤W¦¡¥N¤J¤èµ{¦¡(10-5.4)¡A¥i¥H±o¨ì

                                                                                         (10-5.19)

¨ä¤¤

¥H¤W«Y®Ú¾Ú±`·L¤À¤èµ{¦¡¬°¨Ò¡A©Ò°µªººt¾É»P»¡©ú¡AŪªÌ°w¹ï¯S©w·L¤À¤èµ{¦¡¨D¸Ñ®É¡A¥i®Ú¾Ú¬Û¦P§@ªk§@¾A·í³B²z¡C

²Ä¤»¸`  ¶®¥i¥²¦h¶µ¦¡»P¾Þ§@¯x°}

¥¿¥æ°t¸mªk«Y±Ä¥Î¥¿¥æ¦h¶µ¦¡§@¬°°ò¦¨ç¼Æ¡A§Q¥Î¥¿¥æ¦h¶µ¦¡ªº¯S©Ê¡A²¤Æ¼Æ¾Ç°t¸mªkªº³B²zµ{§Ç¡C±`¥Îªº¥¿¥æ¦h¶µ¦¡¥]¬A§õ®Ú¼w¦h¶µ¦¡(Legendre Polynomial)¤Î¥»¸`©Ò¤¶²Ðªº¶®¥i¥²¦h¶µ¦¡(Jacobi Polynomial)µ¥¡C¥H¤U°w¹ï¶®¥i¥²¦h¶µ¦¡ªº¯S©Ê¤Î¦p¦ó§Q¥Î¨ä¯S©Ê¼¶¼gµ{¦¡¡A§@²­n»¡©ú¡C

[¢Ï]   ¶®¥i¥²¦h¶µ¦¡ªº°ò¥»©w¸q

¶®¥i¥²¦h¶µ¦¡¬O¤@ºØ¨å«¬ªº¥¿¥æ¦h¶µ¦¡¡A¨ä°ò¥»©w¸q¬°

¡Qj¡×0¡A1¡A2¡A¡K¡K¡AN¡Ð1        (10-6.1)

©Îªí¥Ü¦¨

                    (10-6.2)

            

¦³Ãö¶®¥i¥²¦h¶µ¦¡ªº¸Ô²Ó»¡©ú¡A½Ð°Ñ¦Ò¤uµ{¼Æ¾Ç®ÑÄy¡C

[¢Ð]  ¶®¥i¥²¦h¶µ¦¡ªºÃ¹¼wͺ®æªí¥Üªk

¥Hù¼wͺ®æ¤èµ{¦¡(Rodrigues¡¦ Formula)ªí¥Ü¡A¶®¥i¥²¦h¶µ¦¡¥i¥H¼g¦¨

               (10-6.3)

  

[C]  ¶®¥i¥²¦h¶µ¦¡ªº´`§Ç­pºâ¤½¦¡ªí¥Üªk

¶®¥i¥²¦h¶µ¦¡ªº´`§Ç­pºâ¤½¦¡(Recurrence formula)¬°

pN = [x - gN(N,a,b)] pN-1 ¡V hN(N,a,b) pN-2  ;  p0 = 0                      (10-6.4)

       ;      

h1 = 0  ; 

[D]  ±`¨£ªº¶®¥i¥²¦h¶µ¦¡

±`¨£ªº¶®¥i¥²¦h¶µ¦¡¦p¤Uªí©Ò¥Ü¡G

a

b

N=0

N=1

N=2

N=3

0

0

1

2x-1

6x2-6x+1

20x3-30x2+12x-1

1

0

1

3x-1

10x2-8x+1

35x3-45x2+15x-1

2

0

1

4x-1

15x2-10x+1

56x3-63x2+18x-1

0

1

1

1

1

1

2x-1

6x2-6x+1

14x3-21x2+9x-1

2

1

1

 

¨Ò10-5              ¶®¥i¥²¦h¶µ¦¡¤§­pºâ

        ¸Õ¨Dªº­È¡C

[¸Ñ]

                gN=1/2

               

               

               

[E]  ¶®¥i¥²¦h¶µ¦¡»P°t¸mÂI

¥Ñ¶®¥i¥²¦h¶µ¦¡ªº´`§Ç­pºâ¤½¦¡(Recurrence formula)pN = [x - gN(N,a,b)] pN-1 ¡V hN(N,a,b) pN-2 ¡A p0 = 0¡Q§Q¥Î¤û¹yªk¨D¶®¥i¥²¦h¶µ¦¡ªº®Ú§@¬°°t¸mÂIxi®É¡A°²³]¤w¸gª¾¹Dx1¡Bx2¡B¡K¡Bxk¦@k­Ó¸Ñ¡A­n¨D²Äk+1­Ó¸Ñ®É¡A¥i¥H§Q¥Î»²§U¨ç¼Æ¡A±N¤wª¾ªº¸Ñx1¡Bx2¡B¡K¡Bxk¥Ñ¦h¶µ¦¡¤¤¥ý¦æ¥h°£±¼¡C¦A§Q¥Î¤û¹yªk¸Ñ»²§U¨ç¼ÆGN-K¡A±o¨ì­¡¥N¦¡¬°

xk+1,i= xk+1,i-1 ¡V d(x)                                                                        (10-6.5)

¨ä¤¤

°õ¦æ®É¡A¥Oxk+1,0 ¬°²¤¤j©ó xk ªº¼Æ¦r¡A§Yxk+1,0 = xk + e¡Q¨ä¤¤e¬°¤@­Ó«Ü¤pªº­È¡A¨Ò¦p10-4¡C¶®¥i¥²¦h¶µ¦¡§Q¥Î¥»¸` [C] ªº¤èµ{¦¡­pºâ¡A©ó­pºâ¨D±oxk+1«á¡AÅýk¼W¥[1¡A¦A­«½Æ¥H¤W¨BÆJ¡C§Q¥Î³oºØ¤èªk©Ò«Ø¥ßªº°Æµ{¦¡¦p¤U©Ò¥Ü¡C

 

' ==========================

' ROOTS OF JACOBI POLYNOMIAL

' ==========================

¡¥      Diff1(I) = G(I)

¡¥      Diff2(I) = H(I)

¡¥

AlphaPlusBeta = Alpha + Beta

AlphaMinusBeta = Beta - Alpha

AlphaBeta = Beta * Alpha

Diff1(1) = (AlphaMinusBeta / (AlphaPlusBeta + 2) + 1) / 2                 

Diff2(1) = 0                  

                                                                           

¡¥ Calculate G(I) & H(I)

If N >= 2 Then

    For I = 2 To N

        IM1 = I - 1

        Z = AlphaPlusBeta + 2 * IM1

        Diff1(I) = (AlphaPlusBeta * AlphaMinusBeta / Z / (Z + 2) + 1) / 2

        If I = 2 Then

            Diff2(I) = (AlphaPlusBeta + AlphaBeta + IM1) / Z / Z / (Z + 1)

        Else

            Z = Z * Z

            Y = IM1 * (AlphaPlusBeta + IM1)

            Y = Y * (AlphaBeta + Y)

            Diff2(I) = Y / Z / (Z - 1)

        End If

    Next I

End If

 

' Newton¡¦s Method to find ROOT

X = 0

For I = 1 To N

    Do

        XD = 0

        XN = 1

        XE = 0

        XM = 0

        For J = 1 To N

            XP = (Diff1(J) - X) * XN - Diff2(J) * XD

            XQ = (Diff1(J) - X) * XM - Diff2(J) * XE - XN

            XD = XN

            XE = XM

            XN = XP

            XM = XQ

        Next J

        ZC = 1

        Z = XN / XM

        If I > 1 Then

            For J = 2 To I

                ZC = ZC - Z / (X - Root(J - 1))

            Next J

        End If

        Z = Z / ZC

        X = X - Z

    Loop While (Abs(Z) > 0.000000001)

    Root(I) = X

    X = X + 0.0001

Next I

 

¡¥ To include ROOT at x= 0 and x=1

If (N1 = 1) Then

    For I = 1 To N

        J = N + 1 - I

        Root(J + 1) = Root(J)

    Next I

    Root(1) = 0

End If

If (N2 = 1) Then Root(ND) = 1

 

¡¥ Print ROOTs for the Polynomial

Print

Print "** COLLOCATION POINTS:"

Print

For I = 1 To ND

    Print Format(Root(I), "  0.000000E+00  ")

Next I

 

[F]  ¶®¥i¥²¦h¶µ¦¡ªº¾É¨ç¼Æ

        °²³]§Q¥Î [E] ¤¤©Ò¤¶²Ðªº¤û¹yªk¡A¥i¥H±o¨ì¶®¥i¥²¦h¶µ¦¡ªºN+1­Ó®Ú¡Axj¡Aj=1,2,¡K.,N+1¡A«h¥i±N¶®¥i¥²¦h¶µ¦¡¼g¦¨

                                                                      (10-6.6)

©Î§ï¼g¦¨´`§Ç­pºâ¦¡

        p0(x) = 1

        pj(x) = (x-xj) pj-1(x)    ¡Q  j = 1, 2, ¡K¡K, N+1                             (10-6.7)

±N¤W¦¡·L¤À¡A¥i¥H±o¨ì

                                                     (10-6.8)

                                                   (10-6.9)

                                              (10-6.10)

¥Ñ©ó¡A¦]¦¹¡A§Q¥Î¥H¤W¤èµ{¦¡¡A¥i¥H«Ü§Öªº¨D±o¦b¦U°t¸mÂI¦ì¸m¤Wªº¾É¨ç¼Æ­È¡C¼g¦¨°Æµ{¦¡½d¨Ò¦p¤U¡C

 

¡¥ Prepare Derivatives of the Polynomial

For I = 1 To ND

    X = Root(I)

    Diff1(I) = 1

    Diff2(I) = 0

    Diff3(I) = 0

    For J = 1 To ND

        If J <> I Then

            Y = X - Root(J)

            Diff3(I) = Y * Diff3(I) + 3 * Diff2(I)

            Diff2(I) = Y * Diff2(I) + 2 * Diff1(I)

            Diff1(I) = Y * Diff1(I)

        End If

    Next J

Next I

 

[G]  ¶®¥i¥²¦h¶µ¦¡»P©Ô®æÄõ©_¤º´¡ªk

        °Ñ¦Ò¥»®Ñ²Ä¤T³¹¼Æ­È¤º´¡ªkªº»¡©ú¡A­Y¤wª¾(xi¡Ayi)¡Ai=1,2,¡K..,N+1¡A«hyN(x)¥i¥H§Q¥Î©Ô®æÄõ©_¤º´¡ªk(Lagrangian Interpolation)¼g¦¨

             (10-6.11)

§Q¥Î³oºØ¤èªk©Ò«Ø¥ßªº¤º´¡ªk°Æµ{¦¡¦p¤U©Ò¥Ü¡C

 

' ========================

' LAGRANGIAN INTERPOLATION

' ========================

POL = 1

For I = 1 To ND

    YVA = X1 - Root(I)

    XP(I) = 0

    If YVA = 0 Then XP(I) = 1

    POL = POL * YVA

Next I

If POL <> 0 Then

    For I = 1 To ND

        XP(I) = POL / Diff1(I) / (X1 - Root(I))

    Next I

End If

 

[H]  ¶®¥i¥²¦h¶µ¦¡»P·L¤À¾Þ§@¯x°}

®Ú¾Ú©Ô®æÄõ©_¤º´¡¤èµ{¦¡(10-6.11)¡A¨ú·L¤À¡A¥i¥H±o¨ìy(x)ªº¤@¦¸¤Î¤G¦¸¾É¨ç¼Æ¤À§O¬°

                                           (10-6.12)

                                         (10-6.13)

¨ä¤¤

¨ä¤¤¶®¥i¥²¦h¶µ¦¡ªº¾É¨ç¼Æ¥i¥H§Q¥Î¤èµ{¦¡(10-6.8)¡B(10-6.9)¤Î(10-6.10)¨D¤§¡C§Q¥Î³oºØ¤èªk©Ò«Ø¥ßªº°Æµ{¦¡¦p¤U©Ò¥Ü¡C

 

 

Sub DefMatrix(ID, ND, N1, N2, Diff1, Diff2, Diff3, Root, Vect, A, B)

' =============================

' DERIVATIVE OPERATION MATRICES

' =============================

For I = 1 To ND

    ID = 1

    Call OpMatrix(I, ID, ND, N1, N2, Diff1, Diff2, Diff3, Root, Vect)

    For J = 1 To ND

        A(I, J) = Vect(J)

    Next J

    ID = 2

    Call OpMatrix(I, ID, ND, N1, N2, Diff1, Diff2, Diff3, Root, Vect)

    For J = 1 To ND

        B(I, J) = Vect(J)

    Next J

Next I

End Sub

 

 

Sub OpMatrix(I, ID, ND, N1, N2, Diff1, Diff2, Diff3, Root, Vect)

' ================

' OPERATION MATRIX

' ================

' --ENTRY POINT

    For J = 1 To ND

        If J = Index Then

            If ID = 1 Then

                Vect(J) = Diff2(Index) / Diff1(Index) / 2

            Else

                Vect(J) = Diff3(Index) / Diff1(Index) / 3

            End If

        Else

            Y = Root(Index) - Root(J)

            Vect(J) = Diff1(Index) / Diff1(J) / Y

            If ID = 2 Then Vect(J) = Vect(J) * (Diff2(Index) / Diff1(Index) - 2 / Y)

        End If

    Next J

End Sub

 

 

[I]  ¶®¥i¥²¦h¶µ¦¡»P°ª´µ¼Æ­È¿n¤À

        ¿n¤À¾Þ§@¥i¥H±Ä¥Î¥»®Ñ²Ä¤»³¹©Ò¤¶²Ð¤§°ª´µ¿n¤Àªk¡C

                                                         (10-6.14)

¨ä¤¤¡A¨D¥X¿n¤À°t­«¨ç¼Æwi¡A§Y¥i­pºâ¿n¤Àµ²ªG¡C°ª´µ¶®¥i¥²°t­«¨ç¼Æ¬°

        W(x) = xb(1-x)a                                                                               (10-6.15)

                                       (10-6.16)

­Yx=¢¯¬°¿n¤À°t¸mÂI¡A«hx1 = 1¡A§_«hx1 = 0¡C

­Yx=¢°¬°¿n¤À°t¸mÂI¡A«hx2 = 1¡A§_«hx2 = 0¡C

[J]  ¹p¹D»Pù§B¯S¼Æ­È¿n¤À

°£¤F°ª´µ¿n¤Àªk¥H¥~¡A¹p¹D»Pù§B¯S(Radau and Lobatto)¿n¤Àªk¤]¬O¸û±`³Q¨Ï¥Îªº¼Æ­È¿n¤À¤èªk¡C¨ä°t­«¨ç¼Æ¬°

                                                                                                        (10-6.17)

¨ä¤¤²Ä¤@¤Î²Ä¤G¦¡ºÙ¬°¹p¹D¼Æ­È¿n¤À°t­«¡A²Ä¤T¦¡ºÙ¬°Ã¹§B¯S¼Æ­È¿n¤À°t­«¡C

²Ä¤C¸`  ½u©Ê°ÝÃDªºµ{¦¡³W¹º

®Ú¾Ú¥H¤W½Ñ¸`ªº¤¶²Ð¡A§Ú­Ì¥iÀÀ©w¥X§Q¥Î¥¿¥æ°t¸mªk¸Ñ·L¤À¤èµ{¦¡ªº´X¶µ¨BÆJ¡G

¡]i¡^   ¯È¤W§@·~¡G

l         ¥ÑÃä¬É±ø¥óÁi¾É¥Xy1¤ÎyN¡Ï2ªºªí¥Ü¦¡(¦p¥»³¹²Ä¤­¸`ªº»¡©ú)¡C

l         §Q¥Î·L¤À¾Þ§@¯x°}¤Î¡A±N·L¤À¤èµ{¦¡Âà´«¦¨

             ¨Ã¼g¤U¤Îªºªí¥Ü¤èªk¡C

¡]ii¡^ µ{¦¡³W¹º¡G

l         ¨M©w¨Ï¥ÎªºN­È(³q±`¿ï¥Î4¡ã10¶¡§Y¥i±o¨ì¬Û·í¥¿½Tªº¸Ñ)¡C

l         ¨M©w¨Ï¥Îªº¥¿¥æ¯Å¼ÆºØÃþ¡C

l         ³]­pµ{¦¡§ä¥X¥¿¥æ¦h¶µ¦¡PN(x)ªº®Úxj¡Aj¡×1¡A2¡A¡K¡K¡AN¡A§@¬°°t¸mÂI¡C

l         ³]­pµ{¦¡¨D¥X·L¤À¾Þ§@¯x°}¤Î¡C

l         «Ø¥ß¤Î¡A¨Ã±N·L¤À¤èµ{¦¡§ï¼g¦¨Áp¥ß¤èµ{¦¡¡C

l         §Q¥Î°ª´µ®ø¥hªk¸Ñ½u©ÊÁp¥ß¤èµ{¦¡¡A¨D±o°t¸mÂI¤Wªº¨ç¼Æ­È¡C

l         §Q¥Î¤º´¡ªk¥H¾A·íx¶¡¶Z¦C¦Ly­È¡C

 

²Ä¤K¸`  «D½u©Ê±`·L¤À¤èµ{¦¡

«D½u©Ê±`·L¤À¤èµ{¦¡°ò¥»¤W¤À¦¨¤T¤jÃþ¡G(1)½u©Ê±`·L¤À¤èµ{¦¡¡AÃä¬É±ø¥ó«D½u©Ê¡Q(2)«D½u©Ê±`·L¤À¤èµ{¦¡¡AÃä¬É±ø¥ó¬°½u©Ê¡Q(3)«D½u©Ê±`·L¤À¤èµ{¦¡¡A«D½u©ÊÃä¬É±ø¥ó¡C¦ý¥é¥H¤W¦U¸`³B²z«á¡A³o¤TÃþ«D½u©Ê±`·L¤À¤èµ{¦¡§¡¥iÅܦ¨¤@²ÕÁp¥ßªº«D½u©Ê¥N¼Æ¤èµ{¦¡¡A§Q¥Î¥»®Ñ©Ò¤¶²Ðªº¤û¹y©ÔºÖ´Ëªk©Î³Î½uªk§Y¥i¥é¥H¤W¦U¸`¨D±o¡C¥H¤U§Q¥Î¹ê¨Ò»¡©ú¤§¡C

°Ñ¦Ò¤åÄm

1.         Finlayson, B. A., ¡§The Method of Weighted Residuals and Variational Principles¡¨ Academic Press, (1972).

2.         Villadsen, J., and M. L. Michelsen; ¡§Solution of Differential Equation Models by Polynomial Models¡¨, Prentice-Hall, (1978).

3.         Finalyson, B. A., ¡§Nonlinear Analysis in Chemical Engineering¡¨. (1980).

4.         Davis, M. E., ¡§Numerical Methods and Modeling for Chemical Engineers¡¨, John Wiley, New York, (1984).

5.         Aris, R. ¡§The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts¡¨. Oxford, Clarendon Press (1975).

6.         Carberry, J. J., ¡§Chemical and Catalytic Reaction Engineering¡¨ McGraw-Hill, New York, (1976).

7.         Weisz, P. B., and J. S. Hicks, ¡§The Behavior of Porous Catalyst Particles in View of Internal Mass and Heat Diffusion Effects¡¨, Chem. Eng. Sci., 17, 265 (1962).

 

¦^­º­¶     ¦^²Ä¤T³¡     ¤U¤@³¹